Rhamnolipids are extensively studied biosurfactants due to their potential in many industrial applications, eco-friendly production and properties. However, their availability for broader application is severely limited by their production costs, therefore the optimization of efficacy of their cultivation gains significance as well as the information regarding the physio-chemical properties of rhamnolipids resulting from various cultivation strategies. In this work, the bioprocess design focused on optimization of the rhamnolipid yield of DBM 3774 utilizing the response surface methodology (RSM).
View Article and Find Full Text PDFThe unflagging interest in the surfactants of biological origin, representing ecological alternatives to their synthetic counterparts, has enhanced R&D effort both to produce their new types and to resolve the bottlenecks of their commercialization. In this context, the rhamnolipids, offering a relatively large scale of potential applications, variety of congeners, low toxicity as well as stability towards the extremes of environment, logically attract attention. In this connection, the current state of knowledge concerning these compound exploitation, biosynthesis control and non-genetic factors affecting both production yield and final rhamnolipid product is surveyed.
View Article and Find Full Text PDFRhamnolipids are naturally occurring biosurfactants with a wide range of potential commercial applications. As naturally derived products they present an ecological alternative to synthetic surfactants. The majority of described rhamnolipid productions are single strain Pseudomonas spp.
View Article and Find Full Text PDFRhamnolipid production by two non-pathogenic bacterial strains Acinetobacter calcoaceticus and Enterobacter asburiae, and established rhamnolipid producer Pseudomonas aeruginosa was investigated. Rhamnolipids were separated from supernatant and further purified by thin-layer chromatography. Mass spectrometry with negative electrospray ionization revealed rhamnolipid homologues varying in chain length and unsaturation.
View Article and Find Full Text PDF