Background: Stannous fluoride (SnF) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have found that the addition of zinc phosphate significantly improved stannous stability more effectively than other stabilization methods.
View Article and Find Full Text PDFObjective: To investigate the possible mode of action of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and sodium monofluorophosphate in delivering the benefits of preventing acid erosion and rehardening acid-softened enamel.
Methods: The surfaces of acid-softened bovine enamel specimens were evaluated after application of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate in vitro. Scanning Electron Microscopy (SEM), Electronic Spectrometry for Chemical Analysis (ESCA), and Secondary Ion Mass Spectrometry (SIMS) were used to characterize the enamel surfaces.
Purpose: To ascertain the mode of action of a new Pro-Argin formula desensitizing dentifrice with a gentle whitening benefit containing 8.0% arginine, a high cleaning calcium carbonate system and sodium monofluorophosphate, utilizing a range of state-of-the-art surface techniques.
Methods: Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to assess tubule occlusion.
Objective: These studies have utilized a range of state-of-the-art surface techniques to gain insight into the mechanism of action of a new technology for dentin hypersensitivity relief based upon arginine and calcium carbonate and, in particular, to address important questions regarding the nature and extent of dentin tubule occlusion.
Methods: Confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) have been used to assess tubule occlusion. Energy dispersive x-ray (EDX) and electron spectroscopy for chemical analysis (ESCA) have been used to identify the composition of the dentin plug.