Publications by authors named "Richard J Rickles"

Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response.

View Article and Find Full Text PDF

The use of combination drug regimens has dramatically improved the clinical outcome for patients with multiple myeloma. However, to date, combination treatments have been limited to approved drugs and a small number of emerging agents. Using a systematic approach to identify synergistic drug combinations, combination high-throughput screening (cHTS) technology, adenosine A2A and β-2 adrenergic receptor (β2AR) agonists were shown to be highly synergistic, selective, and novel agents that enhance glucocorticoid activity in B-cell malignancies.

View Article and Find Full Text PDF

Using a combination high-throughput screening technology, multiple classes of drugs and targeted agents were identified that synergize with dexamethasone (Dex) in multiple myeloma (MM) cells. Performing combination screening with these enhancers, we discovered an unexpected synergistic interaction between adenosine receptor agonists and phosphodiesterase (PDE) inhibitors that displays substantial activity in a panel of MM and diffuse large B-cell lymphoma (DLBCL) cell lines and tumor cells from MM patients. We have used selective adenosine receptor agonists, antagonists, and PDE inhibitors as well as small interfering RNAs targeting specific molecular isoforms of these proteins to dissect the molecular mechanism of this synergy.

View Article and Find Full Text PDF

Drug combinations are a promising strategy to overcome the compensatory mechanisms and unwanted off-target effects that limit the utility of many potential drugs. However, enthusiasm for this approach is tempered by concerns that the therapeutic synergy of a combination will be accompanied by synergistic side effects. Using large scale simulations of bacterial metabolism and 94,110 multi-dose experiments relevant to diverse diseases, we provide evidence that synergistic drug combinations are generally more specific to particular cellular contexts than are single agent activities.

View Article and Find Full Text PDF

Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry.

View Article and Find Full Text PDF

The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context.

View Article and Find Full Text PDF