Background And Aims: Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.
View Article and Find Full Text PDFTropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes.
View Article and Find Full Text PDFTropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition.
View Article and Find Full Text PDFThe response of plants to increasing atmospheric CO depends on the ecological context where the plants are found. Several experiments with elevated CO (eCO) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO is important for foreseeing how the forest will function in the future.
View Article and Find Full Text PDFExperimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on , but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading.
View Article and Find Full Text PDFPeat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N -fixing (diazotrophic) and CH -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen.
View Article and Find Full Text PDFMangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings.
View Article and Find Full Text PDFTropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models.
View Article and Find Full Text PDFExperiments show that elevated atmospheric CO (eCO) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO enhancement is critical for projecting terrestrial responses to increasing atmospheric CO and climate change. Here, using data from 14 long-term ecosystem-scale CO experiments, we show that the eCO enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems.
View Article and Find Full Text PDFTropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m .
View Article and Find Full Text PDFCanopy structure-the size and distribution of tree crowns and the spatial and temporal distribution of leaves within them-exerts dominant control over primary productivity, transpiration and energy exchange. Stand structure-the spatial arrangement of trees in the forest (height, basal area and spacing)-has a strong influence on forest growth, allocation and resource use. Forest response to elevated atmospheric CO2 is likely to be dependent on the canopy and stand structure.
View Article and Find Full Text PDFAims: Slow decomposition and isolation from groundwater mean that ombrotrophic peatlands store a large amount of soil carbon (C) but have low availability of nitrogen (N) and phosphorus (P). To better understand the role these limiting nutrients play in determining the C balance of peatland ecosystems, we compile comprehensive N and P budgets for a forested bog in northern Minnesota, USA.
Methods: N and P within plants, soils, and water are quantified based on field measurements.
Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies.
View Article and Find Full Text PDFZani (Research Articles, 27 November 2020, p. 1066) propose that enhancement of deciduous tree photosynthesis in a CO-enriched atmosphere will advance autumn leaf senescence. This premise is not supported by consistent observations from free-air CO enrichment (FACE) experiments.
View Article and Find Full Text PDFLarge areas of highly productive tropical forests occur on weathered soils with low concentrations of available phosphorus (P). In such forests, root and microbial production of acid phosphatase enzymes capable of mineralizing organic phosphorus is considered vital to increasing available P for plant uptake.We measured both root and soil phosphatase throughout depth and alongside a variety of root and soil factors to better understand the potential of roots and soil biota to increase P availability and to constrain estimates of the biochemical mineralization within ecosystem models.
View Article and Find Full Text PDFA common assumption in tropical ecology is that root systems respond rapidly to climatic cues but that most of that response is limited to the uppermost layer of the soil, with relatively limited changes in deeper layers. However, this assumption has not been tested directly, preventing models from accurately predicting the response of tropical forests to environmental change.We measured seasonal dynamics of fine roots in an upper-slope plateau in Central Amazonia mature forest using minirhizotrons to 90 cm depth, which were calibrated with fine roots extracted from soil cores.
View Article and Find Full Text PDFmosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands.
View Article and Find Full Text PDFDirect quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China.
View Article and Find Full Text PDFIncreasing atmospheric CO stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO enrichment increased biomass increment by 1.
View Article and Find Full Text PDFMost experimental studies measuring the effects of climate change on terrestrial C cycling have focused on processes that occur at relatively short time scales (up to a few years). However, climate-soil C interactions are influenced over much longer time scales by bioturbation and soil weathering affecting soil fertility, ecosystem productivity, and C storage. Elevated COcan increase belowground C inputs and stimulate soil biota, potentially affecting bioturbation, and can decrease soil pH which could accelerate soil weathering rates.
View Article and Find Full Text PDFTropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds.
View Article and Find Full Text PDFConsiderable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking.
View Article and Find Full Text PDF