Publications by authors named "Richard J Nelmes"

Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units.

View Article and Find Full Text PDF

A robust and comprehensive method for determining the orientation matrix of a single-crystal sample using the neutron Laue time-of-flight (TOF) technique is described. The new method enables the measurement of the unit-cell parameters with an uncertainty in the range 0.015-0.

View Article and Find Full Text PDF

Sodium exhibits a pronounced minimum of the melting temperature at approximately 118 gigapascals and 300 kelvin. Using single-crystal high-pressure diffraction techniques, we found that the minimum of the sodium melting curve is associated with a concentration of seven different crystalline phases. Slight changes in pressure and/or temperature induce transitions between numerous structural modifications, several of which are highly complex.

View Article and Find Full Text PDF

At ambient conditions the great majority of the metallic elements have simple crystal structures, such as face-centred or body-centred cubic, or hexagonal close-packed. However, when subjected to very high pressures, many of the same elements undergo phase transitions to low-symmetry and surprisingly complex structures, an increasing number of which are being found to be incommensurate. The present critical review describes the high-pressure behaviour of each of the group 1 to 16 metallic elements in detail, summarising previous work and giving the best present understanding of the structures and transitions at ambient temperature.

View Article and Find Full Text PDF

The structure of amorphous ice under pressure has been studied by molecular dynamics at 160 K. The starting low-density phase undergoes significant changes as the density increases, and at rho=1.51 g/cm(3) our calculated g(OO)(r) is in excellent agreement with in situ neutron diffraction data obtained at 1.

View Article and Find Full Text PDF