Publications by authors named "Richard J Lemmers"

Facioscapulohumeral dystrophy type 1 (FSHD1) displays prominent intra- and interfamilial variability, which complicates the phenotype-genotype correlation. In this retrospective study, we investigated FSHD1 patients classified as category D according to the Comprehensive Clinical Evaluation Form (CCEF), a category defined by FSHD patients showing uncommon clinical features, to identify genetic causes explaining these uncommon phenotypes. Demographics, clinical data and clinical scales of FSHD1 patients were retrospectively evaluated.

View Article and Find Full Text PDF

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation.

View Article and Find Full Text PDF

Objective: An observational cross-sectional study was conducted in a national facioscapulohumeral muscular dystrophy (FSHD) expertise center to estimate the penetrance of FSHD1 and to evaluate phenotype-genotype correlations.

Methods: Ten FSHD1 probands carrying 4-9 D4Z4 unit alleles and 140 relatives were examined. All 150 participants were genetically characterized, including D4Z4 methylation levels in the mutation carriers.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy is caused by incomplete repression of the transcription factor DUX4 in skeletal muscle as a consequence of D4Z4 macrosatellite repeat contraction in chromosome 4q35 (FSHD1) or variants in genes encoding D4Z4 chromatin repressors (FSHD2). A clinical hallmark of FSHD is variability in onset and progression suggesting the presence of disease modifiers. A well-known cis modifier is the polymorphic DUX4 polyadenylation signal (PAS) that defines FSHD permissive alleles: D4Z4 chromatin relaxation on non-permissive alleles which lack the DUX4-PAS cannot cause disease in the absence of stable DUX4 mRNA.

View Article and Find Full Text PDF

The myopathy facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by copy number variation of the D4Z4 macrosatellite repeat on chromosome 4. In unaffected individuals the number of 3.3 kb D4Z4 units varies between 8 and 100, whereas 1-10 units are seen in FSHD1 cases.

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD; OMIM 158900 & 158901) is a progressive skeletal muscle dystrophy, characterized by an autosomal dominant inheritance pattern. One of the major unsolved questions in FSHD is the marked clinical heterogeneity, ranging from asymptomatic individuals to severely affected patients with an early onset. An estimated 10% of FSHD patients have an early onset (onset before 10 years of age) and are traditionally classified as infantile FSHD.

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35.

View Article and Find Full Text PDF

Objective: To examine the relationship of clinical and genetic features of patients with facioscapulohumeral muscular dystrophy (FSHD) with 7-10 residual D4Z4 repeats in a large genetically defined FSHD1 cohort.

Methods: We performed a prospective cross-sectional observational study of 74 clinically affected patients with FSHD1. Measures of clinical severity were compared between patients with 1-6 D4Z4 repeats and 7-10 repeats, and included D4Z4 CpG methylation, age at diagnosis, age-adjusted clinical severity score, a muscle pathology grade of quadriceps biopsies (0 = normal, 12 = severe dystrophic changes), quantitative myometry of biopsied muscles, global manual muscle testing scores, and frequency of wheelchair use.

View Article and Find Full Text PDF

The life-threatening Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome is a genetically heterogeneous autosomal recessive disorder. Twenty percent of patients cannot be explained by mutations in the known ICF genes DNA methyltransferase 3B or zinc-finger and BTB domain containing 24. Here we report mutations in the cell division cycle associated 7 and the helicase, lymphoid-specific genes in 10 unexplained ICF cases.

View Article and Find Full Text PDF

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is most often associated with variegated expression in somatic cells of the normally repressed DUX4 gene within the D4Z4-repeat array. The most common form, FSHD1, is caused by a D4Z4-repeat array contraction to a size of 1-10 units (normal range 10-100 units). The less common form, FSHD2, is characterized by D4Z4 CpG hypomethylation and is most often caused by loss-of-function mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene on chromosome 18p.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) predominantly affects the muscles in the face, trunk and upper extremities and is marked by large clinical variability in disease onset and progression. FSHD is associated with partial chromatin relaxation of the D4Z4 repeat array on chromosome 4 and the somatic expression of the D4Z4 encoded DUX4 gene. The most common form, FSHD1, is caused by a contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1-10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle.

View Article and Find Full Text PDF

Facioscapulohumeral dystrophy (FSHD) is caused by decreased epigenetic repression of the D4Z4 macrosatellite array and recent studies have shown that this results in the expression of low levels of the DUX4 mRNA in skeletal muscle. Several other mechanisms have been suggested for FSHD pathophysiology and it remains unknown whether DUX4 expression can account for most of the molecular changes seen in FSHD. Since DUX4 is a transcription factor, we used RNA-seq to measure gene expression in muscle cells transduced with DUX4, and in muscle cells and biopsies from control and FSHD individuals.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy cases with facial weakness before the age of 5 and signs of shoulder weakness by the age of 10 are defined as early onset. Contraction of the D4Z4 repeat on chromosome 4q35 is causally related to facioscapulohumeral muscular dystrophy type 1, and the residual size of the D4Z4 repeat shows a roughly inverse correlation with the severity of the disease. Contraction of the D4Z4 repeat on chromosome 4q35 is believed to induce a local change in chromatin structure and consequent transcriptional deregulation of 4qter genes.

View Article and Find Full Text PDF

Mechanisms that regulate attachment of the scaffold/matrix attachment regions (S/MARs) to the nuclear matrix remain largely unknown. We have studied the effect of simple sequence length polymorphism (SSLP), DNA methylation and chromatin organization in an S/MAR implicated in facioscapulohumeral dystrophy (FSHD), a hereditary disease linked to a partial deletion of the D4Z4 repeat array on chromosome 4q. This FSHD-related nuclear matrix attachment region (FR-MAR) loses its efficiency in myoblasts from FSHD patients.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene.

View Article and Find Full Text PDF

Background: Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa.

View Article and Find Full Text PDF

Objective: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease with an unclear genetic mechanism. Most patients have a contraction of the D4Z4 macrosatellite repeat array at 4qter, which is thought to cause partial demethylation (FSHD1) of the contracted allele. Demethylation has been surveyed at 3 restriction enzyme sites in the first repeat and only a single site across the entire array, and current models postulate that a generalized D4Z4 chromatin alteration causes FSHD.

View Article and Find Full Text PDF

Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction-independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds.

View Article and Find Full Text PDF

Objective: Refractory coeliac disease type II (RCDII) is a severe complication of coeliac disease (CD) characterised by aberrant intraepithelial lymphocytes (IELs) of unknown origin that display an atypical CD3(-)CD7(+)icCD3(+) phenotype. In approximately 40% of patients with RCDII these lymphocytes develop into an invasive lymphoma. In the current study we aimed to identify the physiological counterpart of these cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers looked at 16 patients who showed symptoms of a muscle disease called FSHD, but their DNA tests didn’t show the usual problems.* -
  • They found different genetic issues in some patients, including mutations in genes related to muscle function, but couldn’t find anything wrong in a few cases.* -
  • The study suggests that doctors should do more specific tests to find hidden problems in genes associated with FSHD, even if the typical tests come back normal.*
View Article and Find Full Text PDF