Purpose: To assess root temperature during filling techniques and quantify the volume of endodontic filling materials using infrared thermography (IT) and micro-computed tomography (micro-CT).
Methods: Ninety premolars were divided into three groups: lateral condensation (LC), single cone (SC) and thermomechanical compaction (TMC). For thermal analysis, 45 teeth were assessed using a FLIR T650sc IT camera during filling techniques and 45 teeth were scanned using a Nikon micro-CT to assess gutta-percha, cement, and void volumes.
The objective of this study was to evaluate the effect of root canal preparation with single-file reciprocating systems at different working lengths on the development of apical microcracks using micro-computed tomographic (micro-CT) imaging. Forty extracted human mandibular incisors were randomly assigned to 4 groups (n=10) according to the systems and working length used to prepare the root canals: Group A - WaveOne Gold at apical foramen (AF), Group B - WaveOne Gold 1 mm short of the AF (AF-1 mm), Group C - Unicone (AF) and Group D - Unicone (AF-1 mm). Micro-CT scanning was performed before and after root canal preparation at an isotropic resolution of 14 µm.
View Article and Find Full Text PDFIntroduction: This study aimed to evaluate the ability of 2 optical coherence tomographic (OCT) systems to detect apical dentinal microcracks.
Methods: Twenty extracted human single-rooted mandibular incisors were selected. After root canal preparation with an R40 Reciproc file (VDW, Munich, Germany), the specimens presenting apical microcracks were identified using micro-computed tomographic (micro-CT) scanning as the gold standard.
J Endod
July 2017
Introduction: This study aimed to compare apical microcrack formation after root canal shaping by hand, rotary, and reciprocating files at different working lengths using micro-computed tomographic analysis.
Methods: Sixty mandibular incisors were randomly divided into 6 experimental groups (n = 10) according to the systems and working lengths used for the root canal preparation: ProTaper Universal for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), HyFlex CM (Coltene-Whaledent, Allstetten, Switzerland), and Reciproc (VDW, Munich, Germany) files working at the apical foramen (AF) and 1 mm short of the AF (AF - 1 mm). The teeth were imaged with micro-computed tomographic scanning at an isotropic resolution of 14 μm before and after root canal preparation, and the cross-sectional images generated were assessed to detect microcracks in the apical portion of the roots.
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO concentrations (eCO ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO .
View Article and Find Full Text PDF