Publications by authors named "Richard J Fredrickson"

Although population viability analysis (PVA) can be an important tool for strengthening endangered species recovery efforts, the extent to which such analyses remain embedded in the social process of recovery planning is often unrecognized. We analyzed two recovery plans for the Mexican wolf that were developed using similar data and methods but arrived at contrasting conclusions as to appropriate recovery goals or criteria. We found that approximately half of the contrast arose from uncertainty regarding biological data, with the remainder divided between policy-related decisions and mixed biological-policy factors.

View Article and Find Full Text PDF

Defining units that can be afforded legal protection is a crucial, albeit challenging, step in conservation planning. As we illustrate with a case study of the red wolf (Canis rufus) from the southeastern United States, this step is especially complex when the evolutionary history of the focal taxon is uncertain. The US Endangered Species Act (ESA) allows listing of species, subspecies, or Distinct Population Segments (DPSs) of vertebrates.

View Article and Find Full Text PDF

Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders.

View Article and Find Full Text PDF

Although inbreeding can reduce individual fitness and contribute to population extinction, gene flow between inbred but unrelated populations may overcome these effects. Among extant Mexican wolves (Canis lupus baileyi), inbreeding had reduced genetic diversity and potentially lowered fitness, and as a result, three unrelated captive wolf lineages were merged beginning in 1995. We examined the effect of inbreeding and the merging of the founding lineages on three fitness traits in the captive population and on litter size in the reintroduced population.

View Article and Find Full Text PDF

Hybridization and introgression are significant causes of endangerment in many taxa and are considered the greatest biological threats to the reintroduced population of red wolves (Canis rufus) in North Carolina (U.S.A.

View Article and Find Full Text PDF