Publications by authors named "Richard J Connolly"

Background: Previous animal studies have shown no significant vascular injury from pulsed electrical field (PEF) ablation. We sought to assess the effect of PEF on swine coronary arteries.

Methods: We performed intracoronary and epicardial (near the coronary artery) PEF ablations in swine pretreated with dual antiplatelet and antiarrhythmic therapy.

View Article and Find Full Text PDF

Intratumoral electroporation-mediated IL-12 gene therapy (IT-pIL12/EP) has been shown to be safe and effective in clinical trials, demonstrating systemic antitumor effects with local delivery of this potent cytokine. We recently optimized our IL-12 gene delivery platform to increase transgene expression and efficacy in preclinical models. Here we analyze the immunological changes induced with the new IT-pIL12/EP platform in both electroporated and distant, non-electroporated lesions.

View Article and Find Full Text PDF

Intratumoral electroporation of plasmid DNA encoding the proinflammatory cytokine interleukin 12 promotes innate and adaptive immune responses correlating with anti-tumor effects. Clinical electroporation conditions are fixed parameters optimized in preclinical tumors, which consist of cells implanted into skin. These conditions have little translatability to clinically relevant tumors, as implanted models cannot capture the heterogeneity encountered in genetically engineered mouse models or clinical tumors.

View Article and Find Full Text PDF

The use of electric fields to deliver DNA, called electroporation, has the potential to broadly impact vaccination and disease treatment. The evidence for this has emerged from a large number of recently completed and ongoing clinical trials. The methods for applying electric fields to tissues traditionally involve contact between metal electrodes and the tissue.

View Article and Find Full Text PDF

Plasma-based methods have recently emerged as a technique for augmenting plasmid DNA delivery to skin. This delivery modality relies on the deposition of ionized gas molecules on to targeted cells or tissue to establish an electric field. It is hypothesized that this electric field results in the dielectric breakdown of cell membranes, making cells permeable to exogenous molecules.

View Article and Find Full Text PDF

Augmented delivery of cytokine-expressing DNA plasmids to subcutaneous tumors has been demonstrated to result in a level of enhanced anti-tumor activity. One delivery enhancement method which has been evaluated is in vivo electroporation (EP), a contact-dependent delivery technique where electric pulses are hypothesized to augment the transfer of DNA into cells and tissues through the induction of temporary cell membrane pores. Previous work by members of our group, as well as others, has demonstrated the anti-tumor effects of DNA plasmids expressing the cytokines IL-12 and IL-15.

View Article and Find Full Text PDF

Non-viral in vivo administration of plasmid DNA for vaccines and immunotherapeutics has been hampered by inefficient delivery. Methods to enhance delivery such as in vivo electroporation (EP) have demonstrated effectiveness in circumventing this difficulty. However, the contact-dependent nature of EP has resulting side effects in animals and humans.

View Article and Find Full Text PDF

Non-viral in vivo delivery of DNA, encoding for specific proteins, has traditionally relied on chemical or physical forces applied directly to tissues. Physical methods typically involve contact between an applicator/electrode and tissue and often results in transient subject discomfort. To overcome these limitations of contact-dependent delivery, a helium plasma source was utilized to deposit ionized gasses to treatment/vaccination sites without direct contact between the applicator and the tissues.

View Article and Find Full Text PDF

Ion-based strategies have recently emerged as a method to facilitate molecular delivery. These methods are attractive as they separate the applicator from the treatment site avoiding some issues encountered with other electrically driven methods. Current literature on plasma delivery has shown utility in vitro and in vivo for both drugs and genes.

View Article and Find Full Text PDF

Non-viral delivery of cell-impermeant drugs and DNA in vivo has traditionally relied upon either chemical or physical stress applied directly to target tissues. Physical methods typically use contact between an applicator, or electrode, and the target tissue and may involve patient discomfort. To overcome contact-dependent limitations of such delivery methodologies, an atmospheric helium plasma source was developed to deposit plasma products onto localized treatment sites.

View Article and Find Full Text PDF