Publications by authors named "Richard J Cha"

Objectives: This review aims to explore recent advancements in optical imaging techniques for monitoring the viability of Deep Inferior Epigastric Perforator (DIEP) flap reconstruction. The objectives include highlighting the principles, applications, and clinical utility of optical imaging modalities such as near-infrared spectroscopy (NIRS), indocyanine green (ICG) fluorescence angiography, laser speckle contrast imaging (LSCI), hyperspectral imaging (HSI), dynamic infrared thermography (DIRT), and short-wave infrared thermography (SWIR) in assessing tissue perfusion and oxygenation. Additionally, this review aims to discuss the potential of these techniques in enhancing surgical outcomes by enabling timely intervention in cases of compromised flap perfusion.

View Article and Find Full Text PDF

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice.

View Article and Find Full Text PDF

Pediatric brain tumors are the second most common type of cancer, accounting for one in four childhood cancer types. Brain tumor resection surgery remains the most common treatment option for brain cancer. While assessing tumor margins intraoperatively, surgeons must send tissue samples for biopsy, which can be time-consuming and not always accurate or helpful.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new device called hANDY-i, designed to help locate parathyroid glands during a minimally invasive thyroid surgery called transoral endoscopic thyroidectomy vestibular approach (TOETVA).
  • The hANDY-i uses advanced imaging technology to provide real-time views of both normal and near-infrared fluorescence of the parathyroid glands, assisting surgeons during the procedure.
  • Initial results show that this device successfully identified parathyroid glands in a cadaver and two patients, indicating potential benefits for preventing complications, but more research is needed to confirm its effectiveness in reducing postoperative issues.
View Article and Find Full Text PDF

Introduction: Parathyroid glands may be compromised during thyroid surgery which can lead to hypoparathyroidism and hypocalcemia. Identifying the parathyroid glands relies on the surgeon's experience and the only way to confirm their presence was through tissue biopsy. Near infrared autofluorescence technology offers an opportunity for real-time, non-invasive identification of the parathyroid glands.

View Article and Find Full Text PDF

Objectives: Postoperative bile leakage is a common complication of hepatobiliary surgery and frequently requires procedural intervention. Bile-label 760 (BL-760), a novel near-infrared dye, has emerged as a promising tool for identifying biliary structures and leakage, owing to its rapid excretion and strong bile specificity. This study aimed to assess the intraoperative detection of biliary leakage using intravenously administered BL-760 compared with intravenous (IV) and intraductal (ID) indocyanine green (ICG).

View Article and Find Full Text PDF