Publications by authors named "Richard I Foster"

Molten salts have a significant potential for use as next-generation nuclear reactor coolants and in pyroprocessing for the recycling of used nuclear fuel. However, the molten salt composition needs to be known at all times, and high temperatures and intense ionizing radiation pose challenges for the monitoring instrumentation. Although the technique of laser-induced breakdown spectroscopy (LIBS) has been studied for in situ measurements of molten salts, trials to improve its monitoring accuracy using chemometrics are lacking.

View Article and Find Full Text PDF

Next-generation advanced nuclear reactors based on molten salts are interested to apply machine learning (ML) technology to minimize human error and realize effective autonomous operation. Owing to harsh environments with limited access to molten salts, laser-induced breakdown spectroscopy (LIBS) has been investigated as a possible option for remote online monitoring. However, the height of molten salts is easily fluctuated by vibration.

View Article and Find Full Text PDF

Approximately 7000 drums of waste uranium catalyst are currently present in Korea and require an appropriate treatment and waste management strategy. Recently, one such process has been developed and has proven successful at both laboratory and bench scales. The success of the process has culminated in its verification at a pilot plant scale.

View Article and Find Full Text PDF

A treatment and volume reduction process for a spent uranium-antimony catalyst has been developed. Targeted removal, immobilization and disposal of the uranium component has been confirmed, thus eliminating the radiological hazard. However, significant concentrations of antimony ([Sb] ≥ 25-50 mg L) remain in effluent from the process, which require removal in compliance with Korean wastewater regulations.

View Article and Find Full Text PDF

We have investigated the suitability of phosphate addition, in the form MHPO (M = Na, K or NH), for the selective removal of uranium from a complex waste effluent. The effluent in question is generated as part of a treatment strategy for a spent uranium catalyst, used in the production of acrylonitrile (Sohio process), which has been in temporary storage in Korea since 2004. Both pH (3.

View Article and Find Full Text PDF