Publications by authors named "Richard Huganir"

SYNGAP1 is a major regulator of synaptic plasticity through its interaction with synaptic scaffold proteins and modulation of Ras and Rap GTPase signaling pathways. mutations in humans are often associated with intellectual disability, epilepsy, and autism spectrum disorder. heterozygous loss-of-function results in impaired LTP, premature maturation of dendritic spines, learning disabilities and seizures in mice.

View Article and Find Full Text PDF

The WW and C2 domain-containing protein (WWC2) is implicated in several neurological disorders. Here, we demonstrate that WWC2 interacts with inhibitory, but not excitatory, postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses γ-aminobutyric acid type-A receptor (GABAR) incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABAR recycling to the membrane.

View Article and Find Full Text PDF

The brain helps us survive by forming internal representations of the external world. Excitatory cortical neurons are often precisely tuned to specific external stimuli. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective.

View Article and Find Full Text PDF

Background And Aims: SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by or inherited mutations in one copy of the gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied.

View Article and Find Full Text PDF

Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation.

View Article and Find Full Text PDF

WWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA R recycling to the membrane.

View Article and Find Full Text PDF

Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1).

View Article and Find Full Text PDF

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous -knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures.

View Article and Find Full Text PDF

Excitatory neurotransmission is principally mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). Dysregulation of AMPARs is the cause of many neurological disorders and how therapeutic candidates such as negative allosteric modulators inhibit AMPARs is unclear. Here, we show that non-competitive inhibition desensitizes AMPARs to activation and prevents positive allosteric modulation.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. We used cryo-electron microscopy (cryo-EM) to reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å and reveal the structural diversity of TARPs.

View Article and Find Full Text PDF

The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses.

View Article and Find Full Text PDF

Background And Aims: SYNGAP1 disorder is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by or inherited mutations in one copy of the gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied.

View Article and Find Full Text PDF

Background: Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored.

View Article and Find Full Text PDF

SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause -related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances.

View Article and Find Full Text PDF

Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood.

View Article and Find Full Text PDF

Ca/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. loss-of-function mutations in are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5).

View Article and Find Full Text PDF

Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95.

View Article and Find Full Text PDF

Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a deep-learning image-restoration algorithm that enhances both ex vivo and in vivo imaging, improving the ability to visualize synapses in real-time.
  • * This new method successfully tracked behavior-related changes in synaptic structures in living transgenic mice with high precision, showcasing the potential of combining advanced imaging techniques for neuroscience research.
View Article and Find Full Text PDF

Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood.

View Article and Find Full Text PDF

In multicellular organisms, cell-adhesion molecules connect cells into tissues and mediate intercellular signaling between these cells. In vertebrate brains, synaptic cell-adhesion molecules (SAMs) guide the formation, specification, and plasticity of synapses. Some SAMs, when overexpressed in cultured neurons or in heterologous cells co-cultured with neurons, drive formation of synaptic specializations onto the overexpressing cells.

View Article and Find Full Text PDF
Article Synopsis
  • - Developed a new technique called soma-targeted Cal-Light (ST-Cal-Light) that tags only active neurons by converting calcium rises from action potentials into gene expression, improving the accuracy and reducing light needed for neuronal labeling.
  • - ST-Cal-Light enhances the identification of engaged neurons across various behaviors, such as fear conditioning and social interactions, and shows promise in alleviating seizure symptoms by targeting specific neurons in the hippocampus.
  • - The creation of a ST-Cal-Light knock-in mouse allows researchers to selectively tag active neurons based on their location or cell type, facilitating in-depth studies of neural circuits and their connections to behavior at a high level of detail.
View Article and Find Full Text PDF

Schizophrenia (SZ) and bipolar disorder (BP) are highly heritable major psychiatric disorders that share a substantial portion of genetic risk as well as their clinical manifestations. This raises a fundamental question of whether, and how, common neurobiological pathways translate their shared polygenic risks into shared clinical manifestations. This study shows the miR-124-3p-AMPAR pathway as a key common neurobiological mediator that connects polygenic risks with behavioral changes shared between these two psychotic disorders.

View Article and Find Full Text PDF

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length.

View Article and Find Full Text PDF