Biocomposites comprising a combination of natural fibres and bio-based polymers are good alternatives to those produced from synthetic components in terms of sustainability and environmental issues. However, it is well known that water or aqueous chemical solutions affect natural polymers/fibres more than the respective synthetic components. In this study the effects of water, salt water, acidic and alkali solutions ageing on water uptake, mechanical properties and flammability of natural fibre-reinforced polypropylene (PP) and poly(lactic acid) (PLA) composites were compared.
View Article and Find Full Text PDFThis review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.
View Article and Find Full Text PDFWhile environmental concerns have caused polymeric brominated primary flame retardants (PolyBrFRs) to be effective replacement monomeric species, few alternatives for antimony trioxide (ATO) have been developed beyond the zinc stannates (ZnSs). Previous research, which explored the interactions of aluminium (AlW), tin (II) (SnW) and zinc (ZnW) tungstates with several phosphorus-containing flame retardants in polyamide 6.6 (PA66), is extended to two PolyBrFRs: brominated polystyrene (BrPS), and poly(pentabromobenzyl acrylate) (BrPBz).
View Article and Find Full Text PDFThis work shows that halogen-free, flame retarded polyamide 6 (PA6), fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt %) of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i) aluminium diethyl phosphinate (AlPi) at 10 wt %, known to work principally in the vapour phase and (ii) ammonium sulphamate (AS)/dipentaerythritol (DP) system present at 2.5 and 1 wt % respectively, believed to be condense phase active.
View Article and Find Full Text PDF