The medial frontal cortex (MFC) plays an important but disputed role in speed-accuracy trade-off (SAT). In samples of neural spiking in the supplementary eye field (SEF) in the MFC simultaneous with the visuomotor frontal eye field and superior colliculus in macaques performing a visual search with instructed SAT, during accuracy emphasis, most SEF neurons discharge less from before stimulus presentation until response generation. Discharge rates adjust immediately and simultaneously across structures upon SAT cue changes.
View Article and Find Full Text PDFBalancing the speed-accuracy tradeoff (SAT) is necessary for successful behavior. Using a visual search task with interleaved cues emphasizing speed or accuracy, we recently reported diverse contributions of frontal eye field (FEF) neurons instantiating salience evidence and response preparation. Here, we report replication of visual search SAT performance in two macaque monkeys, new information about variation of saccade dynamics with SAT, extension of the neurophysiological investigation to describe processes in the superior colliculus (SC), and a description of the origin of search errors in this task.
View Article and Find Full Text PDFFront Neurosci
June 2014
There are few behavioral effects as ubiquitous as the speed-accuracy tradeoff (SAT). From insects to rodents to primates, the tendency for decision speed to covary with decision accuracy seems an inescapable property of choice behavior. Recently, the SAT has received renewed interest, as neuroscience approaches begin to uncover its neural underpinnings and computational models are compelled to incorporate it as a necessary benchmark.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2013
The stochastic accumulation framework provides a mechanistic, quantitative account of perceptual decision-making and how task performance changes with experimental manipulations. Importantly, it provides an elegant account of the speed-accuracy trade-off (SAT), which has long been the litmus test for decision models, and also mimics the activity of single neurons in several key respects. Recently, we developed a paradigm whereby macaque monkeys trade speed for accuracy on cue during visual search task.
View Article and Find Full Text PDFIntelligent agents balance speed of responding with accuracy of deciding. Stochastic accumulator models commonly explain this speed-accuracy tradeoff by strategic adjustment of response threshold. Several laboratories identify specific neurons in prefrontal and parietal cortex with this accumulation process, yet no neurophysiological correlates of speed-accuracy tradeoff have been described.
View Article and Find Full Text PDFDischarge rate modulation of frontal eye field (FEF) neurons has been identified with a representation of visual search salience (physical conspicuity and behavioral relevance) and saccade preparation. We tested whether salience or saccade preparation are evident in the trial-to-trial variability of discharge rate. We quantified response variability via the Fano factor in FEF neurons recorded in monkeys performing efficient and inefficient visual search tasks.
View Article and Find Full Text PDFAlthough areas of frontal cortex are thought to be critical for maintaining information in visuospatial working memory, the event-related potential (ERP) index of maintenance is found over posterior cortex in humans. In the present study, we reconcile these seemingly contradictory findings. Here, we show that macaque monkeys and humans exhibit the same posterior ERP signature of working memory maintenance that predicts the precision of the memory-based behavioral responses.
View Article and Find Full Text PDFWe review a new computational model developed to understand how evidence about stimulus salience in visual search is translated into a saccade command. The model uses the activity of visually responsive neurons in the frontal eye field as evidence for stimulus salience that is accumulated in a network of stochastic accumulators to produce accurate and timely saccades. We discovered that only when the input to the accumulation process was gated could the model account for the variability in search performance and predict the dynamics of movement neuron discharge rates.
View Article and Find Full Text PDFStochastic accumulator models account for response time in perceptual decision-making tasks by assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of FEF movement neurons onto evidence accumulation to test alternative models of how evidence is combined in the accumulation process. The models were evaluated on their ability to predict both response time distributions and movement neuron activity observed in monkeys performing a visual search task.
View Article and Find Full Text PDFThe goal of this study was to obtain a better understanding of the physiological basis of errors of visual search. Previous research has shown that search errors occur when visual neurons in the frontal eye field (FEF) treat distractors as if they were targets. We replicated this finding during an inefficient form search and extended it by measuring simultaneously a macaque homologue of an event-related potential indexing the allocation of covert attention known as the m-N2pc.
View Article and Find Full Text PDFThe role of spike rate versus timing codes in visual target selection is unclear. We simultaneously recorded activity from multiple frontal eye field neurons and asked whether they interacted to select targets from distractors during visual search. When both neurons in a pair selected the target and had overlapping receptive fields (RFs), they cooperated more than when one or neither neuron in the pair selected the target, measured by positive spike timing correlations using joint peristimulus time histogram analysis.
View Article and Find Full Text PDFBackground: Concerns about medical errors due to sleep deprivation during residency training led the Accreditation Council for Graduate Medical Education to mandate reductions in work schedules. Although call rotations with extended shifts continue, effects on resident sleep-wake times and working memory capacity (WMC) have not been investigated.
Objectives: The objective of this study was to measure effects of call rotations on sleep-wake times and WMC in internal medicine residents.
Despite nearly a century of electrophysiological studies recording extracranially from humans and intracranially from monkeys, the neural generators of nearly all human event-related potentials (ERPs) have not been definitively localized. We recorded an attention-related ERP component, known as the N2pc, simultaneously with intracranial spikes and local field potentials (LFPs) in macaques to test the hypothesis that an attentional-control structure, the frontal eye field (FEF), contributed to the generation of the macaque homologue of the N2pc (m-N2pc). While macaques performed a difficult visual search task, the search target was selected earliest by spikes from single FEF neurons, later by FEF LFPs, and latest by the m-N2pc.
View Article and Find Full Text PDFComplex span tasks, assumed by many to measure an individual's working memory capacity, are predictive of several aspects of higher-order cognition. However, the underlying cause of the relationships between "processing-and-storage" tasks and cognitive abilities is still hotly debated nearly 30 years after the tasks were first introduced. The current study utilised latent constructs across verbal, numerical, and spatial content domains to examine a number of questions regarding the predictive power of complex span tasks.
View Article and Find Full Text PDFVisual search for a target object among distractors often takes longer when more distractors are present. To understand the neural basis of this capacity limitation, we recorded activity from visually responsive neurons in the frontal eye field (FEF) of macaque monkeys searching for a target among distractors defined by form (randomly oriented T or L). To test the hypothesis that the delay of response time with increasing number of distractors originates in the delay of attention allocation by FEF neurons, we manipulated the number of distractors presented with the search target.
View Article and Find Full Text PDFRapidly forgetting information once attention is diverted seems to be a ubiquitous phenomenon. The cause of this rapid decline has been debated for decades; some researchers claim that memory traces decay as a function of time out of the focus of attention, whereas others claim that prior memory traces cause confusability by interfering with the current trace. Here we demonstrate that performance after a long delay can be better than performance after a short delay if the temporal confusability between the current item and previous items is reduced.
View Article and Find Full Text PDFNumerous studies have described different functional cell types in the frontal eye field (FEF), but the reliability of the distinction between these types has been uncertain. Studies in other brain areas have described specific differences in the width of action potentials recorded from different cell types. To substantiate the functionally defined cell types encountered in FEF, we measured the width of spikes of visual, movement, and visuomovement types of FEF neurons in macaque monkeys.
View Article and Find Full Text PDFAmong a range of cognitive deficits, human cocaine addicts display increased impulsivity and decreased performance monitoring. In order to establish an animal model that can be used to study the underlying neurobiology of these deficits associated with addiction, we have developed a touch screen based Stop Signal Response Task for rhesus monkeys. This task is essentially identical to the clinically used Stop Signal Task employed for diagnostic and research purposes.
View Article and Find Full Text PDFWe evaluated the hypothesis that individual differences in working memory capacity are explained by variation in mental effort, persons with low capacity exerting less effort than persons with high capacity. Groups previously rated high and low in working memory capacity performed the reading span task under three levels of incentive. The effort hypothesis holds that low span subjects exert less effort during task performance than do high spans.
View Article and Find Full Text PDFJ Exp Psychol Gen
May 2007
A time-course analysis of visual attention focusing (attentional constraint) was conducted in groups of participants with high and low working memory spans, a dimension the authors have argued reflects the ability to control attention. In 4 experiments, participants performed the Eriksen flanker paradigm under increasing levels of speed stress. Conditional accuracy functions were derived to measure the time course of attentional constraint.
View Article and Find Full Text PDFWe present an easy-to-administer and automated version of a popular working memory (WM) capacity task (operation span; Ospan) that is mouse driven, scores itself, and requires little intervention on the part of the experimenter. It is shown that this version of Ospan correlates well with other measures of WM capacity and has both good internal consistency (alpha = .78) and test-retest reliability (.
View Article and Find Full Text PDF