J Insect Physiol
September 2019
Compatible interactions between wheat (Triticum aestivum), and its dipteran pest Hessian fly (Hf, Mayetiola destructor) result in successful establishment of larval feeding sites rendering the host plant susceptible. Virulent larvae employ an effector-based feeding strategy to reprogram the host physiology resulting in formation of a protein- and sugar-rich nutritive tissue beneficial to developing larvae. Previous studies documented increased levels of nonessential amino acids (NAA; that need not be received through insect diet) in the susceptible wheat in response to larval feeding, suggesting importance of plant-derived NAA in larval nutrition.
View Article and Find Full Text PDFMayetiola destructor (Say) is a serious pest of wheat, Triticum aestivum L., in North America, North Africa, and Central Asia. Singly deployed resistance genes in wheat cultivars have provided effective management of Hessian fly populations for >50 yr.
View Article and Find Full Text PDFExploration of the biotype structure of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), would improve our knowledge regarding variation in virulence phenotypes and difference in genetic background. Microsatellites (simple sequence repeats) and single-nucleotide polymorphisms (SNPs) are highly variable genetic markers that are widely used in population genetic studies. This study developed and tested a panel of 18 microsatellite and 22 SNP markers to investigate the genetic structure of nine Hessian fly biotypes: B, C, D, E, GP, L, O, vH9, and vH13.
View Article and Find Full Text PDFThe Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is the most important insect pest of wheat (Triticum aestivum L. subsp. aestivum) in the southeastern United States, and the deployment of genetically resistant wheat is the most effective control.
View Article and Find Full Text PDFGall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms that these arthropods use to induce plant galls are poorly understood.
View Article and Find Full Text PDFBackground: Hessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide. Probing of wheat plants by the larvae results in either an incompatible (avirulent larvae, resistant plant) or a compatible (virulent larvae, susceptible plant) interaction. Virulent larvae induce the formation of a nutritive tissue, resembling the inside surface of a gall, in susceptible wheat.
View Article and Find Full Text PDFOne strategy to enhance the durability of Hessian fly resistance (R) genes in wheat is to combine them with transgenes for resistance. To identify potential transgenes for resistance a protocol for rapidly screening the proteins they encode for efficacy toward resistance is required. However, the Hessian fly is an obligate parasite of wheat and related grasses.
View Article and Find Full Text PDFSalivary secretions of neonate Hessian fly larvae initiate a two-way exchange of molecules with their wheat host. Changes in properties of the leaf surface allow larval effectors to enter the plant where they trigger plant processes leading to resistance and delivery of defence molecules, or susceptibility and delivery of nutrients. To increase understanding of the host plant's response, the timing and characteristics of the induced epidermal permeability were investigated.
View Article and Find Full Text PDFGenetic resistance in wheat, Triticum aestivum L., is the most efficacious method for control of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). However, because of the appearance of new genotypes (biotypes) in response to deployment of resistance, field collections of Hessian fly need to be evaluated on a regular basis to provide breeders and producers information on the efficacy of resistance (R) genes with respect to the genotype composition of Hessian fly in regional areas.
View Article and Find Full Text PDFBackground: In most protein-coding genes, greater sequence variation is observed in noncoding regions (introns and untranslated regions) than in coding regions due to selective constraints. During characterization of genes and transcripts encoding small secreted salivary gland proteins (SSSGPs) from the Hessian fly, we found exactly the opposite pattern of conservation in several families of genes: the non-coding regions were highly conserved, but the coding regions were highly variable.
Results: Seven genes from the SSSGP-1 family are clustered as one inverted and six tandem repeats within a 15 kb region of the genome.
The focus of the present study was to compare ultrastructure in the midguts of larvae of the Hessian fly, Mayetiola destructor (Say), under different feeding regimens. Larvae were either fed on Hessian fly-resistant or -susceptible wheat, and each group was compared to starved larvae. Within 3h of larval Hessian fly feeding on resistant wheat, midgut microvilli were disrupted, and after 6h, microvilli were absent.
View Article and Find Full Text PDFIn a salivary gland transcriptomics study we identified a cDNA with a full-length open reading frame for a gene (MdesL1) encoding a lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). Fluorescent in situ hybridization on salivary polytenes positioned MdesL1 on the long arm of Autosome 1. BLASTp and conserved domain searches revealed the deduced amino acid sequence contained a lipase superfamily domain with similarity to lipases and phospholipases from other insects.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
March 2008
Apoptosis or programmed cell death is an active process occurring in multicellular organisms to maintain growth and development. The Hessian fly, Mayetiola destructor, is rapidly emerging as a model insect species to study insect-plant interactions and to decipher some exceptional physiological phenomena. In this study, we report the characterization and expression profiles of a putative Hessian fly defender against apoptotic cell death (DAD1) homologue designated MdesDAD1.
View Article and Find Full Text PDFWe report on the transcriptional patterns of a putative white (w) gene encoding an ABC-active-transporter protein during development in Hessian fly, Mayetiola destructor. The deduced amino acid sequence for the Hessian fly white showed 74-77% similarities to white/ATP-binding-cassette proteins and 52-57% similarities to scarlet/ATP-binding-cassette proteins from other dipterans. Conserved ATP-binding motifs and transmembrane alpha-helix segments were identified in the Hessian fly white protein further supporting its function as an ABC-active-transporter similar to the Drosophila white protein.
View Article and Find Full Text PDFThe cowpea bruchid (Callosobruchus maculatus F.) (Chrysomelidae: Bruchini) is a major pest of stored cowpea grain. With limited available technologies for controlling the bruchid, transgenic cowpeas with bruchid resistance genes engineered into them could become the next management tools.
View Article and Find Full Text PDFHerbivorous insect species are constantly challenged with reactive oxygen species (ROS) generated from endogenous and exogenous sources. ROS produced within insects because of stress and prooxidant allelochemicals produced by host plants in response to herbivory require a complex mode of antioxidant defense during insect/plant interactions. Some insect herbivores have a midgut-based defense against the suite of ROS encountered.
View Article and Find Full Text PDFTwo new Delta and Sigma glutathione S-transferases (GSTs) in the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), were characterized and transcription profiles described. The deduced amino acid sequences for the two M. destructor Delta GSTs (MdesGST-1 and MdesGST-3) showed high similarity with other insect Delta GSTs including the conserved catalytic serine residue.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2007
One of the well-studied components of the insect gut is the peritrophic matrix (PM). This semipermeable structure primarily functions in digestion, and protection against invasive microorganisms and mechanical damage. We report the cDNA cloning and transcription profiles of a peritrophin-A like gene (designated MdesPERI-A1) in the Hessian fly Mayetiola destructor.
View Article and Find Full Text PDFWe report on the transcriptional patterns of three antibacterial genes, a defensin (MdesDEF-1), a diptericin (MdesDIP-1) and a lysozyme (MdesLYS-1), during development in Hessian fly, Mayetiola destructor. Quantitative analysis by real-time PCR of mRNA levels in different tissues revealed a predominance of the transcripts for all three genes in the midgut, while analysis during development revealed greatest abundance in mRNA during the 3rd-instar. An evaluation of the midgut lumen revealed the presence of a diverse bacterial flora in larvae maintained on susceptible wheat.
View Article and Find Full Text PDFGenetic similarities between plant interactions with microbial pathogens and wheat interactions with Hessian fly larvae prompted us to investigate defense and counterdefense mechanisms. Plant oxidative burst, a rapid increase in the levels of active oxygen species (AOS) within the initial 24 h of an interaction with pathogens, commonly is associated with defenses that are triggered by gene-for-gene recognition events similar to those involving wheat and Hessian fly larvae. RNAs encoded by Hessian fly superoxide dismutase (SOD) and catalase (CAT) genes, involved in detoxification of AOS, increased in first-instar larvae during both compatible and incompatible interactions.
View Article and Find Full Text PDFA full-length cDNA encoding a serine carboxypeptidase (designated SmSCP-1) was recovered from an ongoing salivary gland EST project of the wheat midge. The deduced 461-amino acid sequence had a putative signal sequence at the amino terminus, indicating it was a secreted protein. The protein shared homology with serine carboxypeptidases from other insects, mammals, plants, and yeasts.
View Article and Find Full Text PDFWe have recovered two Hessian fly cytochrome P450 cDNAs from an ongoing midgut EST project. CYP6AZ1 and CYP6BA1 represent two new subfamilies within the CYP6 family. The deduced amino acid sequences for CYP6AZ1 and CYP6BA1 show conserved structural and functional domains of insect P450s.
View Article and Find Full Text PDF