The ability to control movement and learn new motor skills is one of the fundamental functions of the brain. The basal ganglia (BG) and the cerebellum (CB) are two key brain regions involved in controlling movement, and neuronal plasticity within these two regions is crucial for acquiring new motor skills. However, how these regions interact to produce a cohesive unified motor output remains elusive.
View Article and Find Full Text PDFDevelopmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity.
View Article and Find Full Text PDFOne key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters.
View Article and Find Full Text PDFPerceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1).
View Article and Find Full Text PDFBackground: Developmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this hypothesis in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity.
View Article and Find Full Text PDFGenetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship.
View Article and Find Full Text PDFLearning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1).
View Article and Find Full Text PDFElucidating how synaptic molecules such as AMPA receptors mediate neuronal communication and tracking their dynamic expression during behavior is crucial to understand cognition and disease, but current technological barriers preclude large-scale exploration of molecular dynamics in vivo. We have developed a suite of innovative methodologies that break through these barriers: a new knockin mouse line with fluorescently tagged endogenous AMPA receptors, two-photon imaging of hundreds of thousands of labeled synapses in behaving mice, and computer vision-based automatic synapse detection. Using these tools, we can longitudinally track how the strength of populations of synapses changes during behavior.
View Article and Find Full Text PDFAMPA receptor (AMPAR) mobility within synapses has been extensively studied However, whether similar mobility properties apply to AMPARs has yet to be determined. Here, we use two-photon fluorescence recovery after photobleaching (FRAP) to study AMPAR mobility within individual dendritic spines in live animals using an overexpression vector. We demonstrate the existence of mobile and immobile fractions of AMPARs across multiple cortical regions and layers.
View Article and Find Full Text PDFThe efficient knock-in of large DNA fragments to label endogenous proteins remains especially challenging in non-dividing cells such as neurons. We developed argeted nock-n with wo (TKIT) guides as a novel CRISPR/Cas9 based approach for efficient, and precise, genomic knock-in. Through targeting non-coding regions TKIT is resistant to INDEL mutations.
View Article and Find Full Text PDFUnderstanding how brain activity encodes information and controls behavior is a long-standing question in neuroscience. This complex problem requires converging efforts from neuroscience and engineering, including technological solutions to perform high-precision and large-scale recordings of neuronal activity as well as unbiased methods to reliably measure and quantify behavior. Thanks to advances in genetics, molecular biology, engineering, and neuroscience, in recent decades, a variety of optical imaging and electrophysiological approaches for recording neuronal activity in awake animals have been developed and widely applied in the field.
View Article and Find Full Text PDFProtein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease.
View Article and Find Full Text PDFRegulation of AMPA receptor (AMPAR) expression is central to synaptic plasticity and brain function, but how these changes occur in vivo remains elusive. Here, we developed a method to longitudinally monitor the expression of synaptic AMPARs across multiple cortical layers in awake mice using two-photon imaging. We observed that baseline AMPAR expression in individual spines is highly dynamic with more dynamics in primary visual cortex (V1) layer 2/3 (L2/3) neurons than V1 L5 neurons.
View Article and Find Full Text PDFModulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task.
View Article and Find Full Text PDFUnravelling the dynamic molecular interplay behind complex physiological processes such as neuronal plasticity requires the ability to both detect minute changes in biochemical states in response to physiological signals and track multiple signalling activities simultaneously. Fluorescent protein-based biosensors have enabled the real-time monitoring of dynamic signalling processes within the native context of living cells, yet most commonly used biosensors exhibit poor sensitivity (for example, due to low dynamic range) and are limited to imaging signalling activities in isolation. Here, we address this challenge by developing a suite of excitation ratiometric kinase activity biosensors that offer the highest reported dynamic range and enable the detection of subtle changes in signalling activity that could not be reliably detected previously, as well as a suite of single-fluorophore biosensors that enable the simultaneous tracking of as many as six distinct signalling activities in single living cells.
View Article and Find Full Text PDFModulation of synaptic strength through trafficking of AMPA receptors is a fundamental mechanism underlying synaptic plasticity and has been shown to be an important process in higher brain functions such as learning and memory. Many studies have used live time-lapse imaging of fluorescently tagged AMPA receptors to directly monitor their membrane trafficking in the basal state as well as during synaptic plasticity. While most of these studies are performed in vitro using neuronal cell cultures, in the past years technological advances have enabled the imaging of synaptic proteins in vivo in intact organisms.
View Article and Find Full Text PDFSleep is an essential process that supports learning and memory by acting on synapses through poorly understood molecular mechanisms. Using biochemistry, proteomics, and imaging in mice, we find that during sleep, synapses undergo widespread alterations in composition and signaling, including weakening of synapses through removal and dephosphorylation of synaptic AMPA-type glutamate receptors. These changes are driven by the immediate early gene Homer1a and signaling from group I metabotropic glutamate receptors mGluR1/5.
View Article and Find Full Text PDFThe claustrum, a poorly understood subcortical structure located between the cortex and the striatum, forms widespread connections with almost all cortical areas, but the cellular organization of claustral circuits remains largely unknown. Based primarily on anatomical data, it has been proposed that the claustrum integrates activity across sensory modalities. However, the extent to which the synaptic organization of claustral circuits supports this integration is unclear.
View Article and Find Full Text PDF