Publications by authors named "Richard H Judge"

Laser-induced fluorescence and wavelength resolved emission spectra of the C ̃(2)B(2)-X̃ (2)A(1) band system of the gas phase aluminum dicarbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high-pressure argon. The three vibrational frequencies of T-shaped AlC(2) have been determined in both the combining states along with several of the anharmonicity constants.

View Article and Find Full Text PDF

We report on high resolution studies of spin-orbit mixing and the singlet-triplet gap in a prototypical halocarbene, CHCl, using stimulated emission pumping (SEP) spectroscopy from the A (1)A(") state. Results are reported for two isotopomers, CH(35)Cl and CD(35)Cl. We have obtained rotationally resolved spectra for the majority of X (1)A(') levels lying between 0 and 6000 cm(-1) above the zero-point level that were previously observed under low resolution in single vibronic level emission studies and several new levels that were previously unobserved or unresolved.

View Article and Find Full Text PDF

Among the most important of chemical intermediates are the carbenes, characterized by a divalent carbon that generates low-lying biradical (triplet) and spin-paired (singlet) configurations with unique chemical reactivities. The "holy grail" of carbene chemistry has been determining the singlet-triplet gap and intersystem crossing rates. We report here the first high resolution spectra of singlet-triplet transitions in a prototypical singlet carbene, CHCl, which probe in detail the triplet state structure and spin-orbit coupling with the ground singlet state.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the transition from the T1(n,pi*) state to the S0 ground state of 2-cyclopenten-1-one (2CP) using phosphorescence excitation spectroscopy in a cooled environment.
  • Key spectral features include an intense origin band near 385 nm and several specific vibrational assignments that were confirmed through jet cooling, which improves spectral clarity compared to room temperature data.
  • Phosphorescence lifetimes vary with vibrational levels, showing that higher vibrational states decay faster, likely due to intersystem crossing, with jet cooling also allowing for better resolution of rotational structures in the spectrum.
View Article and Find Full Text PDF

Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the A (1)A(")-X (1)A(') electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeClDGeCl and the corresponding silylenes (HSiX).

View Article and Find Full Text PDF

The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state.

View Article and Find Full Text PDF