Sustainable practices that reduce food loss are essential for enhancing global food security. We report a 'wrap and plant' seed treatment platform to protect crops from soil-borne pathogens. Developed from the abundantly available wastes of banana harvest and recycled old, corrugated cardboard boxes via chemical-free pulping, these paper-like biodegradable seed wraps exhibit tunable integrity and bioavailability of loaded moieties.
View Article and Find Full Text PDFClimate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials.
View Article and Find Full Text PDFControlled release and targeted delivery of agrochemicals are crucial for achieving effective crop protection with minimal damage to the environment. This work presents an innovative and cost-effective approach to fabricate lignocellulose-based biodegradable porous matrices capable of slow and sustained release of the loaded molecules for effective crop protection. The matrix exhibits tunable physicochemical properties which, when coupled with our unique "wrap-and-plant" concept, help to utilize it as a defense against soil-borne pests while providing controlled release of crop protection moieties.
View Article and Find Full Text PDFNanoparticle formulations of agrichemicals may enhance their performance while simultaneously mitigating any adverse environmental effects. Red clover necrotic mosaic virus (RCNMV) is a soil-transmitted plant virus with many inherent attributes that allow it to function as a plant virus-based nanoparticle (PVN) when loaded with biologically active ingredients. Here we describe how to formulate a PVN loaded with the nematicide abamectin (Abm) beginning with the propagation of the virus through the formulation, deactivation, and characterization of the finished product.
View Article and Find Full Text PDFPlant parasitic nematodes are one of the world's major agricultural pests, causing in excess of $157 billion in worldwide crop damage annually. Abamectin (Abm) is a biological pesticide with a strong activity against a wide variety of plant parasitic nematodes. However, Abm's poor mobility in the soil compromises its nematicide performance because of the limited zone of protection surrounding the growing root system of the plant.
View Article and Find Full Text PDFLoading and release mechanisms of Red clover necrotic mosaicvirus (RCNMV) derived plant viral nanoparticle (PVN) are shown for controlled delivery of the anticancer drug, doxorubicin (Dox). Previous studies demonstrate that RCNMV's structure and unique response to divalent cation depletion and re-addition enables Dox infusion to the viral capsid through a pore formation mechanism. However, by controlling the net charge of RCNMV outer surface and accessibility of RCNMV interior cavity, tunable release of PVN is possible via manipulation of the Dox loading capacity and binding locations (external surface-binding or internal capsid-encapsulation) with the RCNMV capsid.
View Article and Find Full Text PDFRed clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product.
View Article and Find Full Text PDFTherapeutic polylactide (PLA) nanofibrous matrices are fabricated by incorporating plant viral nanoparticles (PVNs) infused with fluorescent agents ethidium bromide (EtBr) and rhodamine (Rho), and cancer therapeutic doxorubicin (Dox). The native virus, Red clover necrotic mosaic virus (RCNMV), reversibly opens and closes upon exposure to the appropriate environmental stimuli. Infusing RCNMV with small molecules allows the incorporation of PVN(Active) into fibrous matrices via two methods: direct processing by in situ electrospinning of a polymer and PVNs solution or immersion of the matrix into a viral nanoparticle solution.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2010
Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell.
View Article and Find Full Text PDFThe Red clover necrotic mosaic virus capsid is utilized to package and release molecules through reversible depletion and re-addition of divalent cations.
View Article and Find Full Text PDFIcosahedral virus capsids demonstrate a high degree of selectivity in packaging cognate nucleic acid genome components during virion assembly. The 36 nm icosahedral plant virus Red clover necrotic mosaic virus (RCNMV) packages its two genomic ssRNAs via a specific capsid protein (CP) genomic RNA interaction. A 20-nucleotide hairpin structure within the genomic RNA-2 hybridizes with RNA-1 to form a bimolecular complex, which is the origin of assembly (OAS) in RCNMV that selectively recruits and orients CP subunits initiating virion assembly.
View Article and Find Full Text PDFThe structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains.
View Article and Find Full Text PDFIcosahedral virus capsids demonstrate a high degree of selectivity in packaging cognate nucleic acid components during assembly. This packaging specificity, when integrated as part of a nanotechnological protocol, has the potential to encapsidate a wide array of foreign materials for delivery of therapeutics or biosensors into target cells. Red clover necrotic mosaic virus (RCNMV) exclusively packages two genomic ssRNAs initiated by a specific protein:RNA interaction between the RCNMV coat protein (CP) and the viral RNA origin of assembly (OAS) element.
View Article and Find Full Text PDFThe 34-nucleotide trans-activator (TA) located within the RNA-2 of Red clover necrotic mosaic virus folds into a simple hairpin. The eight-nucleotide TA loop base pairs with eight complementary nucleotides in the TA binding sequence (TABS) of the capsid protein subgenomic promoter on RNA-1 and trans-activates subgenomic RNA synthesis. Short synthetic oligoribonucleotide mimics of the RNA-1 TABS and the RNA-2 TA form a weak 1:1 bimolecular complex in vitro with a K(a) of 5.
View Article and Find Full Text PDFTransfer RNA structure involves complex folding interactions of the TPsiC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TPsiC domain, rT54, Psi55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNA(Phe) T-half molecules (nucleosides 40-72) with the corresponding unmodified D-half molecule (nucleosides 1-30) was detected and quantified using a native polyacrylamide gel mobility shift assay.
View Article and Find Full Text PDF