Publications by authors named "Richard H Finnell"

Purpose: Spina bifida (SB) arises from complex genetic interactions that converge to interfere with neural tube closure. Understanding the precise patterns conferring SB risk requires a deep exploration of the genomic networks and molecular pathways that govern neurulation. This study aims to delineate genome-wide regulatory signatures underlying SB pathophysiology.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) from gestational tissues are promising for treating congenital malformations but face challenges like invasiveness, prompting the exploration of less risky alternatives like naturally occurring exosomes (EXOs) and their mimics (MIMs) from amniotic fluid-derived MSCs (AF-MSCs).
  • The study involved creating MIMs, comparing their properties to EXOs, and evaluating their safety and distribution in a mouse model predisposed to neural tube defects.
  • Results indicated that MIMs and EXOs have similar characteristics, with MIMs yielding three times more product, and no adverse effects were found in pregnant mice, making MIMs a promising, minimally invasive therapeutic option.
View Article and Find Full Text PDF

Folic acid (FA) is well known to prevent neural tube defects (NTDs), but we do not know why many human NTD cases still remain refractory to FA supplementation. Here, we investigate how the DNA demethylase TET1 interacts with maternal FA status to regulate mouse embryonic brain development. We determined that cranial NTDs display higher penetrance in non-inbred than in inbred Tet1 embryos and are resistant to FA supplementation across strains.

View Article and Find Full Text PDF

Autosomal recessive spinocerebellar ataxias (SCARs) are one of the most common neurodegenerative diseases characterized by progressive ataxia. Although SCARs are known to be caused by mutations in multiple genes, there are still many cases that go undiagnosed or are misdiagnosed. In this study, we presented a SCAR patient, and identified a probable novel pathogenic mutation (c.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored.

View Article and Find Full Text PDF

The etiology of neural tube defects (NTDs) involves complex gene-environmental interactions. Folic acid (FA) prevents NTDs, but the mechanisms remain poorly understood and at least 30% of human NTDs resist the beneficial effects of FA supplementation. Here, we identify the DNA demethylase TET1 as a nexus of folate-dependent one-carbon metabolism and genetic risk factors post-neural tube closure.

View Article and Find Full Text PDF

Prescriptions for antiseizure medications (ASMs) have been rapidly growing over the last several decades due, in part, to an expanding list of clinical indications for which they are now prescribed. This trend has raised concern for potential adverse neurodevelopmental outcomes in ASM-exposed pregnancies. Recent large scale population studies have suggested that the use of topiramate (TOPAMAX, Janssen-Cilag), when prescribed for seizure control, migraines, and/or weight management, is associated with an increased risk for autism spectrum disorder (ASD), intellectual disability, and attention-deficit/hyperactivity disorder (ADHD) in exposed offspring.

View Article and Find Full Text PDF
Article Synopsis
  • Primary congenital glaucoma (PCG) affects about 1 in 10,000 infants in the U.S. and has a genetic basis that is not fully understood, with CYP1B1 being the most commonly mutated gene.
  • * The study investigated the genetics of PCG by analyzing 37 family trios through exome sequencing, looking for genetic variants that might contribute to the condition.
  • * Results showed that while CYP1B1 was present in some cases, 32% of infants had potentially harmful variants in other genes related to eye development, suggesting more complex genetics behind PCG.
View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives.

Methods: MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns.

View Article and Find Full Text PDF

During the first month of pregnancy, the brain and spinal cord are formed through a process called neurulation. However, this process can be altered by low serum levels of folic acid, environmental factors, or genetic predispositions. In 2018, a surveillance study in Botswana, a country with a high incidence of human immunodeficiency virus (HIV) and lacking mandatory food folate fortification programs, found that newborns whose mothers were taking dolutegravir (DTG) during the first trimester of pregnancy had an increased risk of neural tube defects (NTDs).

View Article and Find Full Text PDF

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Meningomyelocele is a serious neural tube defect and the most common structural birth defect affecting the central nervous system.
  • The Spina Bifida Sequencing Consortium found that deletions on chromosome 22q11.2 increase the risk of meningomyelocele by 23 times compared to the general population.
  • Research indicates that the deletion of specific genes in this region, combined with a lack of maternal folate, can significantly increase the risk of neural tube defects in offspring.
View Article and Find Full Text PDF

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy.

View Article and Find Full Text PDF

The environment created during embryogenesis contributes to reducing aberrations that drive structural malformations and tumorigenesis. In this study, we investigate the anti-cancer effect of mesenchymal stem cells (MSCs) derived from 2 different gestational tissues, the amniotic fluid (AF) and the chorionic villi (CV), with emphasis on their secretome. Transcriptomic analysis was performed on patient-derived AF- and CV-MSCs collected during prenatal diagnosis and identified both mRNAs and lncRNAs, involved in tissue homeostasis and inhibiting biological processes associated with the etiology of aggressive cancers while regulating immune pathways shown to be important in chronic disorders.

View Article and Find Full Text PDF

Background: The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are the most common congenital anomalies of the CNS. It is widely appreciated that both genetic and environmental factors contribute to their etiology. The inability to ascribe clear genetic patterns of inheritance to various NTD phenotypes suggests it is possible that epigenetic mechanisms are involved in the etiology of NTDs.

View Article and Find Full Text PDF

Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom heterozygous missense variants in the planar cell polarity gene were detected using exome sequencing. Using several in vitro assays, we show that the p.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing primary cilia, the cell antenna acting as a signaling hub. Fuz, an effector of planar cell polarity (PCP) signaling, involves Shh signaling via cilia formation, while the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of these two genes is similar; however, their functional relations have not been previously explored.

View Article and Find Full Text PDF

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling is the morphogen signaling that regulates embryonic craniofacial and neural tube development. G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling, and its inactivation in mice results in embryo lethality associated with craniofacial defects and neural tube defects. However, the structural defects of later embryonic stages and cell lineages underlying abnormalities have not been well characterized due to the limited lifespan of Gpr161 null mice.

View Article and Find Full Text PDF

T-box transcription factor T (TBXT; T) is required for mesodermal formation and axial skeletal development. Although it has been extensively studied in various model organisms, human congenital vertebral malformations (CVMs) involving T are not well established. Here, we report a family with 15 CVM patients distributed across 4 generations.

View Article and Find Full Text PDF

Background: Down syndrome (DS) clinical multisystem condition is generally considered the result of a genetic imbalance generated by the extra copy of chromosome 21. Recent discoveries, however, demonstrate that the molecular mechanisms activated in DS compared to euploid individuals are more complex than previously thought. Here, we utilize mesenchymal stem cells from chorionic villi (CV) to uncover the role of comprehensive functional genomics-based understanding of DS complexity.

View Article and Find Full Text PDF

Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange.

View Article and Find Full Text PDF