Publications by authors named "Richard H Ashley"

Rationale: S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMCs), through an interaction with the RAGE (receptor for advanced glycation end products).

Objective: We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (BMPR)II, observed in pulmonary arterial hypertension.

Methods And Results: Both S100A4/Mts1 (500 ng/mL) and BMP-2 (10 ng/mL) induce migration of hPASMCs in a novel codependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII short interference (si)RNA.

View Article and Find Full Text PDF

Despite being synthesized in the cytosol without a leader sequence, the soluble 253-residue mammalian protein CLIC4 (Chloride Intracellular Channel 4, or p64H1), a structural homologue of Omega-type glutathione-S-transferase, autoinserts into membranes to form an integral membrane protein with ion channel activity. A predicted transmembrane domain (TMD) near the N-terminus of CLIC4 could mediate membrane insertion, and contribute to oligomeric pores, with minimal reorganization of the soluble protein structure. We tested this idea by reconstituting recombinant CLIC4 in planar bilayers containing phosphatidyethanolamine, phosphatidylserine and cholesterol, recording ion channels with a maximum conductance of approximately 15 pS in KCl under both oxidizing and reducing conditions.

View Article and Find Full Text PDF

Background: Soluble Alzheimer's Abeta oligomers autoinsert into neuronal cell membranes, contributing to the pathology of Alzheimer's Disease (AD), and elevated serum cholesterol is a risk factor for AD, but the reason is unknown. We investigated potential connections between these two observations at the membrane level by testing the hypothesis that Abeta(1-42) relocates membrane cholesterol.

Results: Oligomers of Abeta(1-42), but not the monomeric peptide, inserted into cholesterol-containing phosphatidylcholine monolayers with an anomalously low molecular insertion area, suggesting concurrent lipid rearrangement.

View Article and Find Full Text PDF

Chloride intracellular channels (CLICs) are putative pore-forming glutathione-S-transferase homologs that are thought to insert into cell membranes directly from the cytosol. We incorporated soluble, recombinant human CLIC1 into planar lipid bilayers to investigate the associated ion channels, and noted that channel assembly (unlike membrane insertion) required a specific lipid mixture. The channels formed by reduced CLIC1 were similar to those previously recorded from cells and "tip-dip" bilayers, and specific anti-CLIC1 antibodies inhibited them.

View Article and Find Full Text PDF

Human islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts into phospholipid bilayers, and extends across the membrane.

View Article and Find Full Text PDF

Background: Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E.

View Article and Find Full Text PDF

The sequences for Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under the accession numbers AY312416 and AY312417 respectively. The intracellular pathogen Burkholderia pseudomallei is the causative agent of tropical melioidosis, and Burkholderia thailandensis is a closely-related Gram-negative bacterium that does not cause serious disease. Like other bacteria, the major outer membrane (OM) porins of Burkholderia strains, Bps Omp38 and Bth Omp38 may have roles in antibiotic resistance and immunity.

View Article and Find Full Text PDF

CLIC proteins are components or regulators of novel intracellular anion channels in mammalian cells, and previous studies have suggested that human nuclear membrane-associated CLIC1 and mouse inner mitochondrial membrane CLIC4 are involved in cell division and apoptosis. We have isolated Xenopus homologues of CLIC1 and CLIC4 and shown them to be well conserved during chordate evolution, but poorly conserved in invertebrates. Consistent with fundamental cellular roles, Xenopus CLIC genes are expressed at every stage of embryonic development.

View Article and Find Full Text PDF