Publications by authors named "Richard Gorniak"

Article Synopsis
  • A novel deep learning system was developed to locate hip joints and identify cam-type femoroacetabular impingement (FAI) using radiographs from 3050 patients.
  • The study found that hips were classified into severe, moderate, mild cam-type FAI, or normal, with accuracy rates of 74% for detecting abnormal vs. normal FAI morphology.
  • The deep learning approach showed promise in enhancing the efficiency of radiologists by automatically detecting and categorizing FAI-related changes on pelvic radiographs.
View Article and Find Full Text PDF

Objective: The term "silent sinus syndrome" (SSS) describes spontaneous enophthalmos secondary to subclinical maxillary sinus atelectasis. Debate remains on whether treatment with endoscopic maxillary antrostomy alone is adequate in reversing atelectasis and globe displacement. This study aims to determine the degree of volume change of the diseased sinus and orbit as well as the change in orbital height in patients treated with endoscopic antrostomy without orbital floor augmentation.

View Article and Find Full Text PDF

The epileptic network hypothesis and epileptogenic zone hypothesis are two theories of ictogenesis. The network hypothesis posits that coordinated activity among interconnected nodes produces seizures. The epileptogenic zone hypothesis posits that distinct regions are necessary and sufficient for seizure generation.

View Article and Find Full Text PDF

Purpose: To determine the efficacy of deep learning in assessing endotracheal tube (ETT) position on radiographs.

Materials And Methods: In this retrospective study, 22 960 de-identified frontal chest radiographs from 11 153 patients (average age, 60.2 years ± 19.

View Article and Find Full Text PDF

Objective: We compared long-term seizure outcome, neuropsychological outcome, and occupational outcome of anterior temporal lobectomy (ATL) with and without sparing of mesial structures to determine whether mesial sparing temporal lobectomy prevents memory decline and thus disability, with acceptable seizure outcome.

Methods: We studied patients (n = 21) and controls (n = 21) with no evidence of mesial temporal sclerosis (MTS) on MRI who had surgery to treat drug-resistant epilepsy. Demographic and pre- and postsurgical clinical characteristics were compared.

View Article and Find Full Text PDF

Rates of diabetic retinopathy (DR) and diabetic macular edema (DME), a common ocular complication of diabetes mellitus, are increasing worldwide. There is a substantial burden concerning the detection and management of this condition, particularly in low-resource settings, due to limitations such as the time, cost, and labor associated with current screening and treatment methods. Artificial intelligence (AI) is a modality of pattern recognition that has the potential to combat these limitations in a reliable and cost-effective way.

View Article and Find Full Text PDF

Background: Researchers have used direct electrical brain stimulation to treat a range of neurological and psychiatric disorders. However, for brain stimulation to be maximally effective, clinicians and researchers should optimize stimulation parameters according to desired outcomes.

Objective: The goal of our large-scale study was to comprehensively evaluate the effects of stimulation at different parameters and locations on neuronal activity across the human brain.

View Article and Find Full Text PDF

Ripple oscillations (80-200 Hz) in the normal hippocampus are involved in memory consolidation during rest and sleep. In the epileptic brain, increased ripple and fast ripple (200-600 Hz) rates serve as a biomarker of epileptogenic brain. We report that both ripples and fast ripples exhibit a preferred phase angle of coupling with the trough-peak (or On-Off) state transition of the sleep slow wave in the hippocampal seizure onset zone (SOZ).

View Article and Find Full Text PDF

Osteoblastomas infrequently occur in the calvarium, displaying a preference for temporal and frontal bones when it does. We present an unusual case of a large, expansile osteoblastoma in the occipital bone of a 23-year-old man who presented with a nontender lump at the back of his head. Initial computed tomography scan showed a large occipital bone mass, and after additional imaging, a gross total resection was performed.

View Article and Find Full Text PDF

Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory's predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation.

View Article and Find Full Text PDF

Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures.

View Article and Find Full Text PDF

Assess the efficacy of deep convolutional neural networks (DCNNs) in detection of critical enteric feeding tube malpositions on radiographs. 5475 de-identified HIPAA compliant frontal view chest and abdominal radiographs were obtained, consisting of 174 x-rays of bronchial insertions and 5301 non-critical radiographs, including normal course, normal chest, and normal abdominal x-rays. The ground-truth classification for enteric feeding tube placement was performed by two board-certified radiologists.

View Article and Find Full Text PDF

The aim of this study is to determine the strength and accuracy of diffusion tensor imaging (DTI) parameters to predict neurological injury and recovery in adult cervical spinal cord injury (SCI). DTI magnetic resonance imaging (MRI) was performed on 23 acute cervical SCI patients within 12 h after injury and on 45 controls utilizing a rapid DTI sequence (∼5 min). Neurological assessments were conducted from within 24 h of injury up to 6 months utilizing detailed International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examinations.

View Article and Find Full Text PDF

The medial temporal lobe (MTL) is a locus of episodic memory in the human brain. It is comprised of cytologically distinct subregions that, in concert, give rise to successful encoding and retrieval of context-dependent memories. However, the functional connections between these subregions are poorly understood.

View Article and Find Full Text PDF

Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex.

View Article and Find Full Text PDF

The brain parses the auditory environment into distinct sounds by identifying those acoustic features in the environment that have common relationships (e.g., spectral regularities) with one another and then grouping together the neuronal representations of these features.

View Article and Find Full Text PDF

Background: We sought to determine if ripple oscillations (80-120 Hz), detected in intracranial electroencephalogram (iEEG) recordings of patients with epilepsy, correlate with an enhancement or disruption of verbal episodic memory encoding.

Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch and included the seizure onset zone (SOZ) as a covariate in the LRMs.

View Article and Find Full Text PDF

The hippocampus plays a vital role in various aspects of cognition including both memory and spatial navigation. To understand electrophysiologically how the hippocampus supports these processes, we recorded intracranial electroencephalographic activity from 46 neurosurgical patients as they performed a spatial memory task. We measure signals from multiple brain regions, including both left and right hippocampi, and we use spectral analysis to identify oscillatory patterns related to memory encoding and navigation.

View Article and Find Full Text PDF

The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning.

View Article and Find Full Text PDF

Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now.

View Article and Find Full Text PDF

Memory failures are frustrating and often the result of ineffective encoding. One approach to improving memory outcomes is through direct modulation of brain activity with electrical stimulation. Previous efforts, however, have reported inconsistent effects when using open-loop stimulation and often target the hippocampus and medial temporal lobes.

View Article and Find Full Text PDF

Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC).

View Article and Find Full Text PDF