Publications by authors named "Richard Glaven"

The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe-ZnS core-shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface.

View Article and Find Full Text PDF

Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) demonstrate select optical properties that make them of particular use in biological imaging and biosensing. Controlled attachment of biomolecules such as proteins to the QD surface is thus critically necessary for development of these functional nanobiomaterials. QD surface coatings such as poly(ethylene glycol) impart colloidal stability to the QDs, making them usable in physiological environments, but can impede attachment of proteins due to steric interactions.

View Article and Find Full Text PDF

The expression of genes involved in central metabolism and extracellular electron transfer was examined in real-time in current-producing anode biofilms of Geobacter sulfurreducens. Strains of G. sulfurreducens were generated, in which the expression of the gene for a short half-life fluorescent protein was placed under control of the promoter of the genes of interest.

View Article and Find Full Text PDF

Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas.

View Article and Find Full Text PDF

Single domain antibodies (sdAb) are the recombinantly expressed variable regions from the heavy-chain-only antibodies found in camelids and sharks. SdAb are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. Starting with our previously isolated ricin binding sdAb determined to bind to four non-overlapping epitopes, we constructed a series of sdAb pairs, which were genetically linked through peptides of different length.

View Article and Find Full Text PDF

Geobacter sulfurreducens is one of the few microorganisms available in pure culture known to directly accept electrons from a negatively poised electrode. Microarray analysis was used to compare gene transcript abundance in biofilms of G. sulfurreducens using a graphite electrode as the sole electron donor for fumarate reduction compared with transcript abundance in biofilms growing on the same material, but not consuming current.

View Article and Find Full Text PDF

The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced.

View Article and Find Full Text PDF

The pili of Geobacter sulfurreducens are of interest because of the apparent importance of the type IV pili in extracellular electron transfer. A strain of G. sulfurreducens, designated strain MA, produced many more pili than the previously studied DL-1 strain even though genome resequencing indicated that the MA and DL-1 genome sequences were identical.

View Article and Find Full Text PDF

Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. Cells throughout anode biofilms of Geobacter sulfurreducens reduced the metabolic stains: 5-cyano-2,3-ditolyl tetrazolium chloride and Redox Green, suggesting metabolic activity throughout the biofilm. To compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, anode biofilms were encased in resin and sectioned into inner (0-20 microm from anode surface) and outer (30-60 microm) fractions.

View Article and Find Full Text PDF

The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms.

View Article and Find Full Text PDF

Previous studies have shown that Geobacter sulfurreducens requires the outer-membrane, multicopper protein OmpB for Fe(III) oxide reduction. A homologue of OmpB, designated OmpC, which is 36 % similar to OmpB, has been discovered in the G. sulfurreducens genome.

View Article and Find Full Text PDF

Extracellular electron transfer onto Fe(III) oxides in Geobacter sulfurreducens is considered to require proteins that must be exported to the outer surface of the cell. In order to investigate this, the putative gene for OxpG, the pseudopilin involved in a type II general secretion pathway of Gram-negative bacteria, was deleted. The mutant was unable to grow with insoluble Fe(III) oxide as the electron acceptor.

View Article and Find Full Text PDF

The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor.

View Article and Find Full Text PDF

Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired.

View Article and Find Full Text PDF

Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging.

View Article and Find Full Text PDF