Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes.
View Article and Find Full Text PDFAim: Nanoparticle conjugates have the potential for delivering siRNA, splice-shifting oligomers or nucleic acid vaccines, and can be applicable to anticancer therapeutics. This article compares tripartite conjugates with gold nanoparticles or synthetic methoxypoly(ethylene glycol)-block-polyamidoamine dendrimers.
Materials & Methods: Interactions with model liposomes of a 1:1 molar ratio of tripalmitin:cholesterol or phospholipid:cholesterol were investigated by high-throughput absorbance, as well as fluorescence difference and cellular luminescence assays.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation.
View Article and Find Full Text PDFIn this study, manganese oxide (MnO) nanorods and its association with polyamidoamine dendrimer (PAMAM) and macromolecular RNA were analyzed. Because manganese is found naturally in cells and tissues and binds proteins and nucleic acids, nanomaterials derived from manganese, such as first generation MnO, may have potential as a biocompatible delivery agent for therapeutic or diagnostic biomedical applications. Nucleic acids have a powerful influence over cell processes, such as gene transcription and RNA processing; however, macromolecular RNA is particularly difficult to stabilize as a nanoparticle and to transport across cell membranes while maintaining structure and function.
View Article and Find Full Text PDFMacromolecular nucleic acids such as DNA vaccines, siRNA, and splice-site switching oligomers (SSO) have vast chemotherapeutic potential. Nanoparticulate biomaterials hold promise for DNA and RNA delivery when a means for binding is identified that retains structure-function and provides stabilization by the nanoparticles. In order to provide these benefits of binding, we combined DNA and RNA with protamine-demonstrating association to gold microparticles by electrophoretic, gel shot, fluorescence, and dynamic laser light spectroscopy (DLLS).
View Article and Find Full Text PDFPurification of HA-tagged P2Y2 receptors from transfected human 1321N1 astrocytoma cells yielded a protein with a molecular size determined by SDS-PAGE to be in the range of 57-76 kDa, which is typical of membrane glycoproteins with heterogeneous complex glycosylation. The protein phosphatase inhibitor, okadaic acid, attenuated the recovery of receptor activity from the agonist-induced desensitized state, suggesting a role for P2Y2 receptor phosphorylation in desensitization. Isolation of HA-tagged P2Y2 nucleotide receptors from metabolically [32P]-labelled cells indicated a (3.
View Article and Find Full Text PDFCandida albicans LYS1-encoded saccharopine dehydrogenase (CaLys1p, SDH) catalyzes the final biosynthetic step (saccharopine to lysine + alpha-ketoglutarate) of the novel alpha-aminoadipate pathway for lysine synthesis in fungi. The reverse reaction catalyzed by lysine-alpha-ketoglutarate reductase (LKR) is used exclusively in animals and plants for the catabolism of excess lysine. The 1,146 bp C.
View Article and Find Full Text PDFMany G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP.
View Article and Find Full Text PDFBackground: Extracellular uridine 5'-triphosphate (UTP) induces mitogenic activation of smooth muscle cells (SMCs) through binding to P2Y2 nucleotide receptors. P2Y2 receptor mRNA is upregulated in intimal lesions of rat aorta, but it is unclear how this G-protein-coupled receptor contributes to development of intimal hyperplasia.
Methods And Results: This study used a silicone collar placed around rabbit carotid arteries to induce vascular injury and intimal thickening.