Publications by authors named "Richard G W Anderson"

Cavin-3 is a tumor suppressor protein of unknown function. Using both in vivo and in vitro approaches, we show that cavin-3 dictates the balance between ERK and Akt signaling. Loss of cavin-3 increases Akt signaling at the expense of ERK, while gain of cavin-3 increases ERK signaling at the expense Akt.

View Article and Find Full Text PDF

Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.

View Article and Find Full Text PDF

Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions.

View Article and Find Full Text PDF

Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes.

View Article and Find Full Text PDF

CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves.

View Article and Find Full Text PDF

Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells.

View Article and Find Full Text PDF

Lipid droplets are sites of neutral lipid storage thought to be actively involved in lipid homeostasis. A popular model proposes that droplets are formed in the endoplasmic reticulum (ER) by a process that begins with the deposition of neutral lipids between the membrane bilayer. As the droplet grows, it becomes surrounded by a monolayer of phospholipid derived from the outer half of the ER membrane, which contains integral membrane proteins anchored by hydrophobic regions.

View Article and Find Full Text PDF

Caveolae are a major membrane domain common to most cells. One of the defining features of this domain is the protein caveolin. The exact function of caveolin, however, is not clear.

View Article and Find Full Text PDF

All cells have the capacity to accumulate neutral lipids and package them into lipid droplets. Recent proteomic analyses indicate that lipid droplets are not simple lipid storage depots, but rather complex organelles that have multiple cellular functions. One of these proposed functions is to distribute neutral lipids as well as phospholipids to various membrane-bound organelles within the cell.

View Article and Find Full Text PDF

AAM-B is a putative methyltransferase that is a resident protein of lipid droplets. We have identified an N-terminal 28 amino acid hydrophobic sequence that is necessary and sufficient for targeting the protein to droplets. This sequence will also insert AAM-B into the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Lipid droplets play a critical role in a variety of metabolic diseases. Numerous proteomic studies have provided detailed information about the protein composition of the droplet, which has revealed that they are functional organelles involved in many cellular processes, including lipid storage and metabolism, membrane traffic, and signal transduction. Thus, the droplet proteome indicates that lipid accumulation is only one of a constellation of organellar functions critical for normal lipid metabolism in the cell.

View Article and Find Full Text PDF

Previously we reported that when cell cholesterol is acutely lowered with beta-methyl-cyclodextrin the amount of activated ERK1/2 in caveolae dramatically increases. We traced the origin of this novel method of pERK1/2 accumulation to a macromolecular complex with dual specific phosphatase activity that contains the serine/threonine phosphatase PP2A, the tyrosine phosphatase HePTP, the oxysterol-binding protein OSBP and cholesterol. When cell cholesterol is lowered, or oxysterols is introduced, the complex disassembles and pERK1/2 increases.

View Article and Find Full Text PDF

Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene.

View Article and Find Full Text PDF

Mono-ADP-ribosylation is emerging as an important posttranslational modification that modulates a variety of cell signaling pathways. Here, we present evidence that mono-ADP-ribosylation of the transcriptional corepressor C terminal binding protein, brefeldin A (BFA)-induced ADP-ribosylated substrate (CtBP1/BARS) regulates neutral lipid storage in droplets that are surrounded by a monolayer of phospholipid and associated proteins. CtBP1/BARS is an NAD-binding protein that becomes ribosylated when cells are exposed to BFA.

View Article and Find Full Text PDF

Background: The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation.

Methods And Principal Findings: We show that loss of LRP1 in VSMC (smLRP(-)) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1) and PDGFRbeta in the vascular wall.

View Article and Find Full Text PDF

Recent studies indicate that lipid droplets isolated from a variety of different cells are rich in proteins known to regulate membrane traffic. Among these proteins are multiple Rab GTPases. Rabs are GTP switches that regulate intracellular membrane traffic through an ability to control membrane-membrane docking as well as vesicle motility.

View Article and Find Full Text PDF

Lipid droplets are accumulations of neutral lipids surrounded by a monolayer of phospholipids and associated proteins. Recent proteomic analysis of isolated droplets suggests that they are part of a dynamic organelle system that is involved in membrane traffic as well as packaging and distributing lipids in the cell. To gain a better insight into the function of droplets, we used a combination of mass spectrometry and NMR spectroscopy to characterize the lipid composition of this compartment.

View Article and Find Full Text PDF

Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell.

View Article and Find Full Text PDF

Although peroxisomes oxidize lipids, the metabolism of lipid bodies and peroxisomes is thought to be largely uncoupled from one another. In this study, using oleic acid-cultured Saccharomyces cerevisiae as a model system, we provide evidence that lipid bodies and peroxisomes have a close physiological relationship. Peroxisomes adhere stably to lipid bodies, and they can even extend processes into lipid body cores.

View Article and Find Full Text PDF

Recent proteomic studies of detergent resistant membrane fractions have begun to characterize the protein composition of caveolae and lipid rafts. The methods used in most of these studies, however, are not able to distinguish between plasma membrane and internal membrane lipid domains. Here we used a non-detergent method for obtaining fractions enriched in caveolae derived from the plasma membrane of multiple cell types.

View Article and Find Full Text PDF

Growth of normal cells is anchorage dependent because signalling through multiple pathways including Erk, phosphatidylinositol-3-OH kinase (PI(3)K) and Rac requires integrin-mediated cell adhesion. Components of these pathways localize to low-density, cholesterol-rich domains in the plasma membrane named 'lipid rafts' or 'cholesterol-enriched membrane microdomains' (CEMM). We previously reported that integrin-mediated adhesion regulates CEMM transport such that cell detachment from the extracellular matrix triggers CEMM internalization and clearance from the plasma membrane.

View Article and Find Full Text PDF

Caveolin-1 (CAV1) is the structural protein of the filamentous coat that decorates the cytoplasmic surface of each caveola. Cell culture studies have implicated CAV1 in playing an important role in intracellular cholesterol trafficking. In addition, it has been reported that CAV1 forms a detergent-resistant protein complex with Annexin-2 in enterocytes that can be disrupted by the cholesterol absorption inhibitor ezetimibe, suggesting a possible role for CAV1 in cholesterol absorption.

View Article and Find Full Text PDF

Recent advances in cell signaling research suggest that multiple sets of signal transducing molecules are preorganized and sequestered in distinct compartments within the cell. These compartments are assembled and maintained by specific cellular machinery. The molecular ecology within a compartment creates an environment that favors the efficient and accurate integration of signaling information arriving from humoral, mechanical, and nutritional sources.

View Article and Find Full Text PDF

The low density lipoprotein receptor-related protein 1 (LRP1) has been implicated in intracellular signaling functions as well as in lipid metabolism. Recent in vivo and in vitro studies suggest that LRP1 is a physiological modulator of the platelet-derived growth factor (PDGF) signaling pathway. Here we show that in mouse fibroblasts LRP1 modulates PDGF-BB signaling by controlling endocytosis and ligand-induced down-regulation of the PDGF receptor beta (PDGFRbeta).

View Article and Find Full Text PDF