Publications by authors named "Richard G Sherlock"

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids and individual milk proteins with those that had been measured directly using gas and liquid chromatography methods. The data used in this study was based on 2,005 milk samples collected from 706 Holstein-Friesian × Jersey animals that were managed in a seasonal, pasture-based dairy system, with milk samples collected across 2 consecutive seasons.

View Article and Find Full Text PDF

Background: Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal.

View Article and Find Full Text PDF

Background: Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk.

View Article and Find Full Text PDF

Mammalian species carry ~100 loss-of-function variants per individual, where ~1-5 of these impact essential genes and cause embryonic lethality or severe disease when homozygous. The functions of the remainder are more difficult to resolve, although the assumption is that these variants impact fitness in less manifest ways. Here we report one of the largest sequence-resolution screens of cattle to date, targeting discovery and validation of non-additive effects in 130,725 animals.

View Article and Find Full Text PDF

The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed.

View Article and Find Full Text PDF
Article Synopsis
  • Lactation, hair development, and the ability to maintain a constant body temperature (homeothermy) are key traits that distinguish mammals from other vertebrates.
  • Researchers discovered two specific mutations in genes related to the prolactin signaling pathway that have opposing effects on these three traits.
  • These mutations affect how mammals regulate their body temperature and develop their fur, highlighting the broader significance of the prolactin pathway beyond just lactation.
View Article and Find Full Text PDF