Nanoparticle syntheses are designed to produce the desired product in high yield but traditionally neglect atom-economy. Here we report that the simple, but significant, change of the solvent from 1-octadecene (1-ODE) to the operationally inert octadecane (ODA) permits an atom-economical synthesis of copper selenophosphate (CuPSe) nanoparticles. This change eliminates the competing selenium (Se) delivery pathways from our first report that required an excess of Se.
View Article and Find Full Text PDFThe controlled generation of nitric oxide (NO) from endogenous sources, such as -nitrosoglutathione (GSNO), has significant implications for biomedical implants due to the vasodilatory and other beneficial properties of NO. The water-stable metal-organic framework (MOF) Cu-1,3,5-tris[1-1,2,3-triazol-5-yl]benzene has been shown to catalyze the production of NO and glutathione disulfide (GSSG) from GSNO in aqueous solution as well as in blood. Previous experimental work provided kinetic data for the catalysis of the 2GSNO → 2NO + GSSG reaction, leading to various proposed mechanisms.
View Article and Find Full Text PDFIn 2017, we reported a dye-sensitized, photoelectrolysis cell consisting of fluorine-doped tin oxide (FTO)-coated glass covered by SnO nanoparticles coated with ,'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI) dye and then a photoelectrochemically deposited CoO water oxidation catalyst (WOCatalyst), FTO/nano-SnO/PMPDI/CoO. This system employed nanostructured SnO stabilized by a polyethyleneglycol bisphenol A epichlorohydrin (PEG-BAE) copolymer and other C-containing additives based on a literature synthesis to achieve a higher surface area and thus greater PMPDI dye absorption and resultant light collection. Surprisingly, the addition of the well-established WOCatalyst CoO resulted in a in the photocurrent, an unexpected .
View Article and Find Full Text PDFThe concept of a pseudoelementary step (PEStep) is reviewed, a key concept for approaching the analysis of kinetics data and associated, underlying mechanisms of complex chemical systems. Following a brief Introduction, a definition of a PEStep is given: a PEStep is an building block , that is a starting point for the initial analysis of the observed kinetics and then constructing initial, deliberately minimalistic mechanistic models for complex reactions. PESteps are, therefore and typically, composites of underlying elementary step reactions and can be very useful if not required for the inverse problem of discovering mechanisms from experimental observables for complex reactions.
View Article and Find Full Text PDFIn order to quantitatively predict nano- as well as other particle-size distributions, one needs to have both a mathematical model and estimates of the parameters that appear in these models. Here, we show how one can use Bayesian inversion to obtain statistical estimates for the parameters that appear in recently derived mechanism-enabled population balance models (ME-PBM) of nanoparticle growth. The Bayesian approach addresses the question of "how well do we know our parameters, along with their uncertainties?.
View Article and Find Full Text PDFThe metal-organic framework (MOF) H[(CuCl)-(BTTri), HBTTri = 1,3,5-tris(H-1,2,3-triazol-5-yl)benzene] (CuBTTri) is a precatalyst for biomedically relevant nitric oxide (NO) release from nitrosoglutathione (GSNO). The questions of the number and nature of the catalytically most active, kinetically dominant sites are addressed. Also addressed is whether or not the well-defined structural geometry of MOFs (as solid-state analogues of molecular compounds) can be used to generate specific, testable hypotheses about, for example, if intrapore vs exterior surface metal sites are more catalytically active.
View Article and Find Full Text PDFThe effects of microfiltration removal of filterable dust on nanoparticle formation kinetics and particle-size distribution, in a polyoxometalate polyanion (PWNbO)-stabilized Ir(0) nanoparticle formation system, are analyzed by the newly developed method of Mechanism-Enabled Population Balance Modeling (ME-PBM). The [(BuN)Na(1,5-COD)Ir·PWNbO] precatalyst system produces on average Ir(0) nanoparticles of 1.74 ± 0.
View Article and Find Full Text PDFThe concept of Mechanism-Enabled Population Balance Modeling (ME-PBM) is reported, illustrated by its application to a prototype Ir(0) nanoparticle formation reaction. ME-PBM is defined herein as the use of now available, experimentally established, disproof-based, deliberately minimalistic mechanisms of particle formation as the required input for more rigorous Population Balance models, critically including an experimentally established nucleation mechanism. ME-PBM achieves the long-sought goal of connecting such now available experimental minimum mechanisms to the understanding and rational control of particles size and size distributions.
View Article and Find Full Text PDFIt is of considerable interest to prepare weakly ligated, labile ligand (WLLL) nanoparticles for applications in areas such as chemical catalysis. WLLL nanoparticles can be defined as nanoparticles with sufficient, albeit minimal, surface ligands of moderate binding strength to meta-stabilize nanoparticles, initial stabilizer ligands that can be readily replaced by other, desired, more strongly coordinating ligands and removed completely when desired. Herein, we describe WLLL nanoparticles prepared from [Ir(1,5-COD)Cl] reduction under H, in acetone.
View Article and Find Full Text PDFCopper containing compounds catalyze decomposition of S-Nitrosoglutathione (GSNO) in the presence of glutathione (GSH) yielding glutathione disulfide (GSSG) and nitric oxide (NO). Extended NO generation from an endogenous source is medically desirable to achieve vasodilation, reduction in biofilms on medical devices, and antibacterial activity. Homogeneous and heterogeneous copper species catalyze release of NO from endogenous GSNO.
View Article and Find Full Text PDFA series of six exemplary cobalt-polyoxometalate (Co-POM) precatalysts have been examined to determine if they are molecular water-oxidation catalysts (WOCatalysts) or if, instead, they actually form heterogeneous, electrode-bound CoO as the true WOCatalyst under electrochemically driven water-oxidation catalysis (WOCatalysis) conditions. Specifically, WOCatalysis derived from the following six Co-POMs has been examined at pH 5.8, 8.
View Article and Find Full Text PDFA 2013 paper proposed a "redox crystallization" (R-C) mechanism for the formation of Au nanoparticles from the reduction of a AuCl precursor. That study used an unconventional analysis of the valuable, expertly obtained kinetics data reported, and came up with multiple claims and insights collected under the putatively new R-C mechanism. If confirmed, those claims and the R-C mechanism provide a valuable addition to the knowledge of gold nanoparticle formation kinetics and mechanisms.
View Article and Find Full Text PDFThe synthesis of CoO core nanoparticles from cobalt acetate is explored in alcohol solvents plus limited water using O as oxidant and NHOH as the base, all in comparison to controls in water alone employing the otherwise identical synthetic procedure. Syntheses in EtOH or t-BuOH cosolvents with limited water yield phase-pure and size-controlled (3 ± 1 nm) CoO-core nanoparticles. In marked contrast, the synthesis in water alone yields mixed phases of CoO and β-Co(OH) with a very large particle-size range (14-400 nm).
View Article and Find Full Text PDFAn important but virtually ignored 1978 paper by Reeves and co-workers, which examined a dye-OAc hydrolysis and then agglomeration system, is reanalyzed in light of current state of knowledge of nucleation and growth/agglomeration phenomena. The Finke-Watzky two-step mechanism is used to account quantitatively for the kinetics data, in turn providing deconvolution of dye hydrolysis and nucleation of agglomerative growth, from the agglomerative growth step, including their separate rate constants. Significantly, the effects of microfiltration of the removable dust on the two steps and their rate constants are uncovered and quantitated for the first time, including the finding that the presence of dust accelerates both steps by ca.
View Article and Find Full Text PDFA planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO) films in a dye-sensitized photoelectrochemical cell architecture.
View Article and Find Full Text PDFThe question is addressed if dust is kinetically important in the nucleation and growth of Ir(0) nanoparticles formed from [BuN]Na(1,5-COD)Ir·PWNbO (hereafter [(COD)Ir·POM]), reduced by H in propylene carbonate solvent. Following a concise review of the (often-neglected) literature addressing dust in nucleation phenomena dating back to the late 1800s, the nucleation and growth kinetics of the [(COD)Ir·POM] precatalyst system are examined for the effects of 0.2 μm microfiltration of the solvent and precatalyst solution, of rinsing the glassware with that microfiltered solvent, of silanizing the glass reaction vessel, for the addition of <0.
View Article and Find Full Text PDFThe nucleation process yielding Ir(0) nanoparticles from (BuN)Na[(1,5-COD)Ir·PWNbO] (abbreviated hereafter as (COD)Ir·POM, where POM = the polyoxometalate, PWNbO) under H is investigated to learn the true molecularity, and hence the associated kinetically effective nucleus (KEN), for nanoparticle formation for the first time. Recent work with this prototype transition-metal nanoparticle formation system ( J. Am.
View Article and Find Full Text PDFThe vanadium-containing cobalt polyoxometalate (Co-POM) Co4V2W18O68(10-) (hereafter Co4V2W18) has been reported to be a stable, homogeneous water-oxidation catalyst, one with a claimed record turnover frequency that is also reportedly 200-fold faster than its phosphorus congener, Co4P2W18O68(10-). The claimed superior water-oxidation catalysis activity of the vanadium congener, Co4V2W18, rests squarely on the reported synthesis of Co4V2W18, its purity, and its stability in both the solid-state and in solution. Attempts to repeat the preparation of Co4V2W18 by either of two literature syntheses, along with the other studies reported herein, led to the discovery of multiple, convoluted problems in the prior literature of Co4V2W18.
View Article and Find Full Text PDFPalladium(0) nanoparticles continue to be important in the field of catalysis. However, and despite the many prior reports of Pd(0)n nanoparticles, missing is a study that reports the kinetically controlled formation of Pd(0)n nanoparticles with the simple stabilizer [Bu4N]2HPO4 in an established, balanced formation reaction where the kinetics and mechanism of the nanoparticle-formation reaction are also provided. It is just such studies that are the focus of the present work.
View Article and Find Full Text PDFNucleation initiates phase changes across nature. A fundamentally important, presently unanswered question is if nucleation begins as classical nucleation theory (CNT) postulates, with n equivalents of monomer A forming a "critical nucleus", A(n), in a thermodynamic (equilibrium) process. Alternatively, is a smaller nucleus formed at a kinetically limited rate? Herein, nucleation kinetics are studied starting with the nanoparticle catalyst precursor, [A] = [(Bu4N)5Na3(1,5-COD)Ir(I)·P2W15Nb3O62], forming soluble/dispersible, B = Ir(0)(∼300) nanoparticles stabilized by the P2W15Nb3O62(9-) polyoxoanion.
View Article and Find Full Text PDFA novel perylene diimide dye functionalized with phosphonate groups, N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI), is synthesized and characterized. Thin films of PMPDI spin-coated onto indium tin oxide (ITO) substrates are further characterized, augmented by photoelectrochemically depositing a CoOx catalyst, and then investigated as photoanodes for water oxidation. These ITO/PMPDI/CoOx electrodes show visible-light-assisted water oxidation with photocurrents in excess of 150 μA/cm(2) at 1.
View Article and Find Full Text PDFReproducible syntheses of high-purity [(n-C4H9)4N]9P2W15Nb3O62 and, therefore, also the supported [(1,5-COD)Ir(I)](+) organometallic precatalyst, [(n-C4H9)4N]5Na3(1,5-COD)Ir(P2W15Nb3O62), have historically proven quite challenging. In 2002, Hornstein et al. published an improved synthesis reporting 90% pure [(n-C4H9)4N]9P2W15Nb3O62 in their hands.
View Article and Find Full Text PDFProduct stoichiometry, particle-size defocusing, and kinetic evidence are reported consistent with and supportive of a four-step mechanism of supported transition-metal nanoparticle formation in contact with solution: slow continuous nucleation, A → B (rate constant k1), autocatalytic surface growth, A + B → 2B (rate constant k2), bimolecular agglomeration, B + B → C (rate constant k3), and secondary autocatalytic surface growth, A + C → 1.5C (rate constant k4), where A is nominally the Ir(1,5-COD)Cl/γ-Al2O3 precursor, B the growing Ir(0) particles, and C the larger, catalytically active nanoparticles. The significance of this work is at least 4-fold: first, this is the first documentation of a four-step mechanism for supported-nanoparticle formation in contact with solution.
View Article and Find Full Text PDFReported herein is the synthesis of the previously unknown [Ir(1,5-COD)(μ-H)](4) (where 1,5-COD = 1,5-cyclooctadiene), from commercially available [Ir(1,5-COD)Cl](2) and LiBEt(3)H in the presence of excess 1,5-COD in 78% initial, and 55% recrystallized, yield plus its unequivocal characterization via single-crystal X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, electrospray/atmospheric pressure chemical ionization mass spectrometry (ESI-MS), and UV-vis, IR, and nuclear magnetic resonance (NMR) spectroscopies. The resultant product parallels--but the successful synthesis is different from, vide infra--that of the known and valuable Rh congener precatalyst and synthon, [Rh(1,5-COD)(μ-H)](4). Extensive characterization reveals that a black crystal of [Ir(1,5-COD)(μ-H)](4) is composed of a distorted tetrahedral, D(2d) symmetry Ir(4) core with two long [2.
View Article and Find Full Text PDFDetermining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e.
View Article and Find Full Text PDF