Objective: To assess the relationship between MRI-derived changes in whole-brain and ventricular volume with change in cognitive scores in Alzheimer's disease (AD), mild cognitive impairment (MCI) and control subjects.
Material And Methods: In total 131 control, 231 MCI and 99 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with T1-weighted volumetric MRIs from baseline and 12-month follow-up were used to derive volume changes. Mini mental state examination (MMSE), Alzheimer's disease assessment scale (ADAS)-cog and trails test changes were calculated over the same period.
We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 ± 0.
View Article and Find Full Text PDFTensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.
View Article and Find Full Text PDFBackground: Both cognitive tests and MRI-based measures have been suggested as outcomes in trials assessing disease-modifying therapies in Alzheimer's disease (AD).
Objective: To compare changes in longitudinal MRI measures with changes in performance on cognitive tests routinely used in AD clinical trials.
Method: Fifty-two subjects from the placebo-arm of a clinical trial in mild-to-moderate AD had volumetric T(1)-weighted scans and cognitive tests including the Mini-Mental State Examination (MMSE), AD Assessment Scale-Cognitive Subscale, Disability Assessment for Dementia, AD Cooperative Study-Clinical Global Impression of Change and Clinical Dementia Rating at baseline and one-year later.
Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer's Disease Neuroimaging Initiative (ADNI).
View Article and Find Full Text PDFObjective: To compare an automated intensity-based measure of medial temporal atrophy in Alzheimer disease (AD) with existing volumetric and visually based methods.
Design: Longitudinal study comparing a medial temporal atrophy measure with 2 criterion standards: (1) total hippocampal (HC) volume adjusted for total intracranial volume and (2) standard visual rating scale of medial temporal atrophy.
Setting: Cognitive disorders specialist clinic.
We compared two methods of measuring cerebral atrophy in a cohort of 38 clinically probable Alzheimer's disease (AD) subjects and 22 age-matched normal controls, using metrics of zero atrophy, consistency, scaled atrophy and AD/control group separation. The two methods compared were the boundary shift integral (BSI) and a technique based on the integration of Jacobian determinants from non-rigid registration. For each subject, we used two volumetric magnetic resonance (MR) scans at baseline and a third obtained 1 year later.
View Article and Find Full Text PDFThis study explores the diagnostic utility of atrophy rates of the cingulate gyrus, its subdivisions and the hippocampus in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Regions were manually outlined on MR images of a group of pathologically or genetically confirmed patients with AD (n=19), FTLD (n=8) and age-matched controls (n=11). Mean (S.
View Article and Find Full Text PDFManual segmentation of the hippocampus is the gold standard in volumetric hippocampal magnetic resonance imaging (MRI) analysis; however, this is difficult to achieve reproducibly. This study explores whether application of local registration and calculation of the hippocampal boundary shift integral (HBSI) can reduce random variation compared with manual measures. Hippocampi were outlined on the baseline and registered-repeat MRIs of 32 clinically diagnosed Alzheimer's disease (AD) patients and 47 matched controls (37-86 years) with a wide range of scanning intervals (175-1173 days).
View Article and Find Full Text PDF