Background: Variational AutoEncoders (VAE) might be utilized to extract relevant information from an IMU-based gait measurement by reducing the sensor data to a low-dimensional representation. The present study explored whether VAEs can reduce IMU-based gait data of people after stroke into a few latent features with minimal reconstruction error. Additionally, we evaluated the psychometric properties of the latent features in comparison to gait speed, by assessing 1) their reliability; 2) the difference in scores between people after stroke and healthy controls; and 3) their responsiveness during rehabilitation.
View Article and Find Full Text PDFBackground: Gait is often impaired in people after stroke, restricting personal independence and affecting quality of life. During stroke rehabilitation, walking capacity is conventionally assessed by measuring walking distance and speed. Gait features, such as asymmetry and variability, are not routinely determined, but may provide more specific insights into the patient's walking capacity.
View Article and Find Full Text PDF