The likelihood that viable non-indigenous biofouling species will survive a voyage on a vessel is influenced by a range of factors, including the speed, duration, and route of the voyage and the amount of time the vessel spends in port. In this study, a land-based dynamic flow device was used to test the effect of recruit age, vessel speed and voyage duration on the survivorship and growth of the bryozoan Bugula neritina. In the experiment, one-week-old recruits had a higher likelihood (100%) of surviving voyages than older (one-month-old, 90%) or younger (one-day-old, 79%) recruits, but survival was not influenced by vessel speed (6 and 18 knots) or voyage duration (two and eight days).
View Article and Find Full Text PDFNon-indigenous species can dominate fouling assemblages on artificial structures in marine environments; however, the extent to which infected structures act as reservoirs for subsequent spread to natural habitats is poorly understood. Didemnum vexillum is one of few colonial ascidian species that is widely reported to be highly invasive in natural ecosystems, but which in New Zealand proliferates only on suspended structures. Experimental work revealed that D.
View Article and Find Full Text PDFShipping is almost certainly the most prevalent human-mediated transport vector for non-indigenous species (NIS) within the marine environment. The Royal Australian Navy (RAN) has long acknowledged the importance of sound environmental management and in recent years has taken a proactive approach to addressing risks associated with marine biosecurity. primarily as a result of biofouling on Navy vessel returning from overseas operations.
View Article and Find Full Text PDFThis study examined the efficacy of heated seawater for the treatment and remediation of fouled vessel sea chest habitats. In laboratory trials, three temperature regimes (37.5°C for 60 min, 40°C for 30min and 42.
View Article and Find Full Text PDFThis study used a specially designed MAGPLATE system to quantify the en route survivorship and post-voyage recovery of biofouling assemblages subjected to short voyages (< 12 h) across a range of vessel speeds (slow, medium, fast; in the range 4.0-21.5 knots).
View Article and Find Full Text PDFThis study experimentally determined the effect of different vessel voyage speeds (5, 10 and 18 knots = 2.6, 5.1 and 9.
View Article and Find Full Text PDFVessel hull-fouling is increasingly recognised as one of the major vectors for the transfer of marine non-indigenous species. For hundreds of years, copper (Cu) has been used as a primary biocide to prevent the establishment of fouling assemblages on ships' hulls. Some non-indigenous fouling taxa continue to be transferred via hull-fouling despite the presence of Cu antifouling biocides.
View Article and Find Full Text PDFDespite its frequent use in terrestrial and freshwater systems, there is a lack of published experimental research examining the effectiveness of spray-delivered chemicals for the management of non-indigenous and/or unwanted pests in marine habitats. This study tested the efficacy of spraying acetic acid, hydrated lime and sodium hypochlorite for the control of marine fouling assemblages. The chemicals are considered relatively 'eco-friendly' due to their low toxicity and reduced environmental persistence compared to synthetic biocides, and they were effective in controlling a wide range of organisms.
View Article and Find Full Text PDFRecent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth.
View Article and Find Full Text PDFVessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings.
View Article and Find Full Text PDF