Publications by authors named "Richard F L Evans"

An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature.

View Article and Find Full Text PDF

Ultrafast manipulation of magnetic order has challenged the understanding of the fundamental and dynamic properties of magnetic materials. So far single-shot magnetic switching has been limited to ferrimagnetic alloys, multilayers, and designed ferromagnetic (FM) heterostructures. In FM/antiferromagnetic (AFM) bilayers, exchange bias (H) arises from the interfacial exchange coupling between the two layers and reflects the microscopic orientation of the antiferromagnet.

View Article and Find Full Text PDF

We present an experimental and computational investigation the Neodymium thickness dependence of the effective damping constant (αeff) in/Neodymium (Py/Nd) bilayers. The computational results show that the magnetic damping is strongly dependent on the thickness of Nd, which is in agreement with experimental data. Self consistent solutions of the spin accumulation model and the local magnetisation were used in the simulations.

View Article and Find Full Text PDF

The power consumption of modern random access memory (RAM) has been a motivation for the development of low-power non-volatile magnetic RAM (MRAM). Based on a CoFeB/MgO magnetic tunnel junction, MRAM must satisfy high thermal stability and a low writing current while being scaled down to a sub-20 nm size to compete with the densities of current RAM technology. A recent development has been to exploit perpendicular shape anisotropy along the easy axis by creating tower structures, with the free layers' thickness (along the easy axis) being larger than its width.

View Article and Find Full Text PDF

2D magnets can potentially revolutionize information technology, but their potential application to cooling technology and magnetocaloric effect (MCE) in a material down to the monolayer limit remain unexplored. Herein, it is revealed through multiscale calculations the existence of giant MCE and its strain tunability in monolayer magnets such as CrX (X = F, Cl, Br, I), CrAX (A = O, S, Se; X = F, Cl, Br, I), and Fe GeTe . The maximum adiabatic temperature change ( ), maximum isothermal magnetic entropy change, and specific cooling power in monolayer CrF are found as high as 11 K, 35 µJ m  K , and 3.

View Article and Find Full Text PDF

The discovery of magnetization switching via spin transfer torque (STT) in PMA-based MTJs has led to the development of next-generation magnetic memory technology with high operating speed, low power consumption and high scalability. In this work, we theoretically investigate the influence of finite size and temperature on the mechanism of magnetization switching in CoFeB-MgO based MTJ to get better understanding of STT-MRAM fundamentals and design. An atomistic model coupled with simultaneous solution of the spin accumulation is employed.

View Article and Find Full Text PDF

The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- (1D) or two-dimensional (2D) isotropic magnets with short-ranged interactions. Here we show that in finite-size 2D van der Waals magnets typically found in lab setups (within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy. We demonstrate that magnetic ordering can be created in 2D flakes independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects.

View Article and Find Full Text PDF

Dynamic simulations of spin-transfer and spin-orbit torques are increasingly important for a wide range of spintronic devices including magnetic random access memory, spin-torque nano-oscillators and electrical switching of antiferromagnets. Here we present a computationally efficient method for the implementation of spin-transfer and spin-orbit torques within the Landau-Lifshitz-Gilbert equation used in micromagnetic and atomistic simulations. We consolidate and simplify the varying terminology of different kinds of torques into a physical action and physical origin that clearly shows the common action of spin torques while separating their different physical origins.

View Article and Find Full Text PDF

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations.

View Article and Find Full Text PDF

Anti-phase boundaries (APBs) are structural defects which have been shown to be responsible for the anomalous magnetic behavior observed in different nanostructures. Understanding their properties is crucial in order to use them to tune the properties of magnetic materials by growing APBs in a controlled way since their density strongly depends on the synthesis method. In this work we investigate their influence on magnetite (FeO) thin films by considering an atomistic spin model, focussing our study on the role that the exchange interactions play across the APB interface.

View Article and Find Full Text PDF

Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here, we show the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl at zero magnetic field.

View Article and Find Full Text PDF

Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here, the recently discovered 2D van der Waals (vdW) CrI is identified as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. It is found that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI but quantum rescaling corrections are required to reproduce its thermal properties.

View Article and Find Full Text PDF

FeO nanoparticles are one of the most promising candidates for biomedical applications such as magnetic hyperthermia and theranostics due to their bio-compatibility, structural stability and good magnetic properties. However, much is unknown about the nanoscale origins of the observed magnetic properties of particles due to the dominance of surface and finite size effects. Here we have developed an atomistic spin model of elongated magnetite nanocrystals to specifically address the role of faceting and elongation on the magnetic shape anisotropy.

View Article and Find Full Text PDF

The switching of magnetic domains induced by an ultrashort laser pulse has been demonstrated in nanostructured ferromagnetic films. This leads to the dawn of a new era in breaking the ultimate physical limit for the speed of magnetic switching and manipulation, which is relevant to current and future information storage. However, our understanding of the interactions between light and spins in magnetic heterostructures with nanoscale domain structures is still lacking.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins.

View Article and Find Full Text PDF

Power consumption is the main limitation in the development of new high performance random access memory for portable electronic devices. Magnetic RAM (MRAM) with CoFeB/MgO based magnetic tunnel junctions (MTJs) is a promising candidate for reducing the power consumption given its non-volatile nature while achieving high performance. The dynamic properties and switching mechanisms of MTJs are critical to understanding device operation and to enable scaling of devices below 30 nm in diameter.

View Article and Find Full Text PDF

The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment.

View Article and Find Full Text PDF

We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.

View Article and Find Full Text PDF

We present a systematic first-principles study of Fe | MgO bilayer systems emphasizing the influence of the iron layer thickness on the geometry, the electronic structure and the magnetic properties. Our calculations ensure the unconstrained structural relaxation at scalar relativistic level for various numbers of iron layers placed on the magnesium oxide substrate. Our results show that due to the formation of the interface the electronic structure of the interface iron atoms is significantly modified involving charge transfer within the iron subsystem.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session43d3dmhe6v7qt0t5jqddn5r9a67fl5et): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once