Publications by authors named "Richard F Campbell"

The standard reference strain, N2, has evolved marked behavioral changes in social feeding behavior since its isolation from the wild. We show that the causal, laboratory-derived mutations in two genes, npr-1 and glb-5, confer large fitness advantages in standard laboratory conditions. Using environmental manipulations that suppress social/solitary behavior differences, we show the fitness advantages of the derived alleles remained unchanged, suggesting selection on these alleles acted through pleiotropic traits.

View Article and Find Full Text PDF

The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes.

View Article and Find Full Text PDF

Most biological traits and common diseases have a strong but complex genetic basis, controlled by large numbers of genetic variants with small contributions to a trait or disease risk. The effect-size of most genetic variants is not absolute and is instead dependent upon multiple factors such as the age and genetic background of an organism. In order to understand the mechanistic basis of these changes, we characterized heritable trait differences between two domesticated strains of C.

View Article and Find Full Text PDF

Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks.

View Article and Find Full Text PDF