We report a novel method for the rapid, sensitive, and quantitative detection of alkanes, alcohols, and aldehydes that relies on the reaction of bacterial luciferase with an aldehyde, resulting in the emission of light. Primary alcohols with corresponding aldehydes that are within the substrate range of the particular luciferase are detected after conversion to the aldehyde by an alcohol dehydrogenase. In addition, alkanes themselves may be detected by conversion to primary alcohols by an alkane hydroxylase, followed by conversion to the aldehyde by alcohol dehydrogenase.
View Article and Find Full Text PDFWe report a computer simulation study of the electron paramagnetic resonance (EPR) spectral line shape of the iron-molybdenum cofactor of nitrogenase. The unusually broad and asymmetric line shape of the EPR spectrum can be interpreted in terms of a distribution of zero-field splitting parameters called D-strain. The best fit simulations were computed using D = 2.
View Article and Find Full Text PDF