Anthocyanins are pigmented secondary metabolites produced via the flavonoid biosynthetic pathway and play important roles in plant stress responses, pollinator attraction, and consumer preference. Using RNA-sequencing analysis of a cross between diploid potato ( L.) lines segregating for flower color, we identified a homolog of the () gene family that encodes a MYB transcription factor, herein termed , as the regulator of anthocyanin production in potato corollas.
View Article and Find Full Text PDFPotato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses.
View Article and Find Full Text PDFThe cultivated potato () has a complex genetic structure due to its autotetraploidy and vegetative propagation which leads to accumulation of mutations and a highly heterozygous genome. A high degree of heterozygosity has been considered to be the main driver of fitness and agronomic trait performance in potato improvement efforts, which is negatively impacted by genetic load. To understand the genetic landscape of cultivated potato, we constructed a gynogenic dihaploid (2 = 2 = 24) population from cv.
View Article and Find Full Text PDFEndoreduplication, the replication of a cell's nuclear genome without subsequent cytokinesis, yields cells with increased DNA content and is associated with specialization, development and increase in cellular size. In plants, endoreduplication seems to facilitate the growth and expansion of certain tissues and organs. Among them is the tuber of potato (Solanum tuberosum), which undergoes considerable cellular expansion in fulfilling its function of carbohydrate storage.
View Article and Find Full Text PDFCultivated potatoes ( L.), domesticated from wild species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives ( section ). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America.
View Article and Find Full Text PDFBackground: Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic maps have been developed for numerous plant species since the late 1980s, few of these maps have provided the necessary resolution needed to investigate the genomic and epigenomic features underlying meiotic crossovers.
Results: Using a whole genome sequencing-based approach, we developed two high-density reference-based haplotype maps using diploid potato clones as parents.
Phytosterol homeostasis may be maintained in leaves through diversion of intermediates into glycoalkaloid biosynthesis, whereas in tuber flesh, excess intermediates are catalyzed by tuber-specific StLAS - like , resulting in low tuber glycoalkaloids. Lanosterol synthase (LAS) and cycloartenol synthase (CAS) are phylogenetically related enzymes. Cycloartenol is the accepted precursor leading to cholesterol and phytosterols, and in potato, to steroidal glycoalkaloid (SGA) biosynthesis.
View Article and Find Full Text PDFBackground: Endoreduplication, the process of DNA replication in the absence of cell division, is associated with specialized cellular function and increased cell size. Genes controlling endoreduplication in tomato fruit have been shown to affect mature fruit size. An efficient method of estimating endoreduplication is required to study its role in plant organ development.
View Article and Find Full Text PDFWithin a population of F hybrids between two genotypes ( L. Group Phureja DM 1-3 516 R44 [DM] and L. Group Tuberosum RH89-039-16 [RH]) used in the potato genome sequencing project, we observed fruit set after self-pollination on many plants.
View Article and Find Full Text PDFGenes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra- and interspecific diploid segregating populations were used.
View Article and Find Full Text PDFClonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement.
View Article and Find Full Text PDFA potato mutant with a strong stress-response phenotype, and a partial mutant revertant, were characterized. Gene expression patterns and DNA cytosine methylation varied between these and wild-type, indicating a role for DNA cytosine methylation changes in the gene expression and visible phenotypes. Morphological and molecular studies were conducted to compare potato cv.
View Article and Find Full Text PDFDiploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds. As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences.
View Article and Find Full Text PDFThe potato cv. Bintje and a Bintje activation-tagged mutant, underperformer (up) were compared. Mutant up plants grown in vitro were dwarf, with abundant axillary shoot growth, greater tuber yield, altered tuber traits and early senescence compared to wild type.
View Article and Find Full Text PDFVariation for allelic state within genes of both primary and secondary metabolism influences the quantity and quality of steroidal glycoalkaloids produced in potato leaves. Genetic factors associated with the biosynthesis and accumulation of steroidal glycoalkaloids (SGAs) in potato were addressed by a candidate gene approach and whole genome single nucleotide polymorphism (SNP) genotyping. Allelic sequences spanning coding regions of four candidate genes [3-hydroxy-3-methylglutaryl coenzyme A reductase 2 (HMG2); 2,3-squalene epoxidase; solanidine galactosyltransferase; and solanidine glucosyltransferase (SGT2)] were obtained from two potato species differing in SGA composition: Solanum chacoense (chc 80-1) and Solanum tuberosum group Phureja (phu DH).
View Article and Find Full Text PDFThe genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci.
View Article and Find Full Text PDFNatural variation in five candidate genes of the steroidal glycoalkaloid (SGA) metabolic pathway and whole-genome single nucleotide polymorphism (SNP) genotyping were studied in six wild [Solanum chacoense (chc 80-1), S. commersonii, S. demissum, S.
View Article and Find Full Text PDFCultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and intermarket class crosses and introgressions of wild and cultivated Solanum relatives.
View Article and Find Full Text PDFTomato (Solanum lycopersicum) is a model organism for Solanaceae in both molecular and agronomic research. This project utilized Agrobacterium tumefaciens transformation and the transposon-tagging construct Activator (Ac)/Dissociator (Ds)-ATag-Bar_gosGFP to produce activation-tagged and knockout mutants in the processing tomato cultivar M82. The construct carried hygromycin resistance (hyg), green fluorescent protein (GFP), and the transposase (TPase) of maize (Zea mays) Activator major transcript X054214.
View Article and Find Full Text PDFKEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps.
View Article and Find Full Text PDFFragaria vesca was transformed with a transposon tagging construct harbouring amino terminally deleted maize transposase and EGFP (Ac element), NPTII, CaMV 35S promoter (P35S) driving transposase and mannopine synthase promoter (Pmas) driving EGFP (Ds element). Of 180 primary transgenics, 48 were potential launch pads, 72 were multiple insertions or chimaeras, and 60 exhibited somatic transposition. T₁ progeny of 32 putative launch pads were screened by multiplex PCR for transposition.
View Article and Find Full Text PDFTo facilitate genome-guided breeding in potato, we developed an 8303 Single Nucleotide Polymorphism (SNP) marker array using potato genome and transcriptome resources. To validate the Infinium 8303 Potato Array, we developed linkage maps from two diploid populations (DRH and D84) and compared these maps with the assembled potato genome sequence. Both populations used the doubled monoploid reference genotype DM1-3 516 R44 as the female parent but had different heterozygous diploid male parents (RH89-039-16 and 84SD22).
View Article and Find Full Text PDFPotato (Solanum tuberosum L.), a domesticated species that is the fourth most important world agricultural commodity, requires significant management to minimize the effects of herbivore and pathogen damage on crop yield. A wild relative, Solanum chacoense Bitt.
View Article and Find Full Text PDF