Publications by authors named "Richard E Van Emmerik"

Background: A sensitive test reflecting subtle sensorimotor changes throughout disease progression independent of mobility impairment is currently lacking in progressive multiple sclerosis.

Objectives: We examined non-ambulatory measures of upper and lower extremity sensorimotor function that may reveal differences between relapsing-remitting and progressive forms of multiple sclerosis.

Methods: Cutaneous sensitivity, proprioception, central motor function and mobility were assessed in 32 relapsing-remitting and 31 progressive multiple sclerosis patients and 30 non-multiple sclerosis controls.

View Article and Find Full Text PDF

Low muscle power, particularly at high velocities, has been linked to poor physical function in older adults. Any loss in muscle power following fatiguing exercise or daily activities could impact physical function and postural control until power has fully recovered. To test the overall hypothesis that a common task such as walking can result in prolonged power loss and decreased physical function and balance, 17 healthy older (66-81 years) women completed a 32-min walking test (32MWT) designed to induce neuromuscular fatigue, followed by 60min of recovery (60R).

View Article and Find Full Text PDF

Purpose: This study aimed to compare clinical and free-living walking cadence in school-age children and to examine how the allometric scaling of leg length variability affects objective ambulatory activity assessment.

Methods: A total of 375 children (154 boys and 221 girls, 9-11 yr old) completed GAITRite-determined slow, normal, and fast walks and wore accelerometers for 1 wk. Dependent variables from clinical assessment included gait speed, cadence, and step length, whereas steps per day, peak 1-min cadence, and peak 60-min cadence were assessed during free living.

View Article and Find Full Text PDF

Individuals regulate the transmission of shock to the head during running at different stride frequencies although the consequences of this on head-gaze stability remain unclear. The purpose of this study was to examine if providing individuals with visual feedback of their head-gaze orientation impacts tibial and head accelerations, shock attenuation and head-gaze motion during preferred speed running at different stride frequencies. Fifteen strides from twelve recreational runners running on a treadmill at their preferred speed were collected during five stride frequencies (preferred, ±10% and ±20% of preferred) in two visual task conditions (with and without real-time visual feedback of head-gaze orientation).

View Article and Find Full Text PDF

The purpose of this study was to investigate the coordination between teams spread during football matches using cross-correlation and vector coding techniques. Using a video-based tracking system, we obtained the trajectories of 257 players during 10 matches. Team spread was calculated as functions of time.

View Article and Find Full Text PDF

Loss of postural center-of-pressure complexity (COP complexity) has been associated with reduced adaptability that accompanies disease and aging. The aim of this study was to identify if COP complexity is reduced: (1) in those with Multiple Sclerosis (MS) compared to controls; (2) when vision is limited compared to remaining intact; and (3) during more demanding postural conditions compared to quiet standing. Additionally, we explored the relationship between the COP complexity and disease severity, fatigue, cutaneous sensation and central motor drive.

View Article and Find Full Text PDF

Dual-task interference caused by mobile phone use while walking increases safety risks by increasing attentional and cognitive demands. Situational awareness, important for control of walking and safety, has been examined previously but measured only by the awareness of visually noteworthy objects in the environment or the number of times the person looked up from the phone. This study systematically investigated the effects of texting on situational awareness to different environments and its consequent impact on gait kinematics.

View Article and Find Full Text PDF

The purpose of this study was to investigate the nature of inter-joint coordination at different levels of skilled performance to: (1) distinguish learners who were successful versus unsuccessful in terms of their task performance; (2) investigate the pathways of change during the learning of a new coordination pattern and (3) examine how the learner's coordination patterns relate to those of experts in the longswing gymnastics skill. Continuous relative phase of hip and shoulder joint motions was examined for longswings performed by two groups of novices, successful (n = 4) and unsuccessful (n = 4) over five practice sessions, and two expert gymnasts. Principal component analysis showed that during longswing positions where least continuous relative phase variability occurred for expert gymnasts, high variability distinguished the successful from the unsuccessful novice group.

View Article and Find Full Text PDF

This study investigated timing and coordination during the swing phase of swing leg, body center of mass (CoM) and head during walking people with multiple sclerosis (MS; n = 19) and controls (n = 19). The MS group showed differences in swing phase timing at all speeds. At imposed but not preferred speeds, the MS group had less time to prepare for entry into the unstable equilibrium, as the CoM entered this phase of swing earlier.

View Article and Find Full Text PDF

Background: Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF).

Methods: We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.

View Article and Find Full Text PDF

In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks.

View Article and Find Full Text PDF

Recent literature has related differences in pelvis-trunk coordination to low back pain (LBP) status. In addition, repetitive motions involving bending and twisting have been linked to high incidence of LBP. The purpose of this study was to examine trunk sagittal motion - axial rotation ('bend and twist') coordination during locomotion in three groups of runners classified by LBP status (LBP: current low back pain; RES: resolved low back pain and CTR: control group with no history of LBP).

View Article and Find Full Text PDF

Soldier equipment compromises task performance as temporal constraints during critical situations and load increase inertial and interactive forces during movement. Methods are necessary to optimise equipment that relate task performance to underlying coordination and perception-action coupling. Employing ecological task analysis and methods from dynamical systems theory, equipment load and coordination was examined during two sub-tasks embedded in combat performance, threat discrimination and dynamic marksmanship.

View Article and Find Full Text PDF

The aim of this paper was to present a review on the role that movement variability (MV) plays in the analysis of sports movement and in the monitoring of the athlete's skills. MV has been traditionally considered an unwanted noise to be reduced, but recent studies have re-evaluated its role and have tried to understand whether it may contain important information about the neuro-musculo-skeletal organisation. Issues concerning both views of MV, different approaches for analysing it and future perspectives are discussed.

View Article and Find Full Text PDF

Overuse injuries are generally defined as a repetitive micro-trauma to tissue. Many researchers have associated particular biomechanical parameters as an indicator of such injuries. However, while these parameters have been reported in single studies, in many instances, it has been difficult to verify these parameters as causative to the injury.

View Article and Find Full Text PDF

Objectives: To investigate (1) whether previously observed changes in gait parameters in individuals with multiple sclerosis (MS) are the result of slower preferred walking speeds or reflect adaptations independent of gait speed; and (2) the changes in spatiotemporal features of the unstable swing phase of gait in people with MS.

Design: Cross-sectional study assessing changes in gait parameters during preferred, slow (0.6m/s), medium (1.

View Article and Find Full Text PDF

During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition.

View Article and Find Full Text PDF

Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during a precision fitting task as task constraints became more difficult.

View Article and Find Full Text PDF

Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred.

View Article and Find Full Text PDF

Background: The purpose of this study was to compare pelvis-trunk coordination and coordination variability over a range of walking and running speeds between three groups of runners; runners with low to moderate low back pain; runners who had recovered from a single bout of acute low back pain; and runners who had never experienced any symptoms of low back pain.

Methods: Pelvis and trunk kinematic data were collected as speed was systematically increased on a treadmill. Coordination between pelvis and trunk in all three planes of motion was measured using continuous relative phase, and coordination variability was defined as the standard deviation of this measure.

View Article and Find Full Text PDF

Previous reports on changes in postural control in adolescent idiopathic scoliosis (AIS) compared to healthy controls have been inconsistent. This may suggest center of pressure (COP) sway parameters are not sufficient for determining the ability to maintain quiet upright stance indicating more complex measures may be needed to examine postural control in AIS. The purpose of this investigation was to compare postural control between AIS of different severity levels and healthy controls using time-to-contact (TtC), the complexity index of multiscale entropy (C(r)), and COP sway parameters.

View Article and Find Full Text PDF

Study Design: Two-way repeated-measures analysis of variance.

Objective: To assess pelvis and trunk three-dimensional segmental excursions and coordination differences during walking and running between runners with low back pain (LBP), runners with resolved LBP, and a control group with no history of LBP.

Summary Of Background Data: Studies have documented differences in pelvis and trunk coordination between those with moderate to severe LBP during walking.

View Article and Find Full Text PDF

Variability in the spatio-temporal coordination of human movement kinematics is often assessed by vector coding and continuous relative phase (CRP). To facilitate appropriate comparisons between the findings of studies that have used different techniques to assess variability, the purposes of this study were: (1) to determine if both vector coding and CRP behave according to dynamical systems theories on variability and state space transitions; and (2) to determine if trends in coordination variability during movement are consistent when using either vector coding or CRP. We present both a theoretical case (the Lorenz Attractor) and two experimental cases (rearfoot-forefoot coupling during overground walking for 22 subjects; the effect of treadmill speed on thigh-leg coupling for five subjects).

View Article and Find Full Text PDF

The role of arm swing in running has been minimally described, and the contributions of arm motion to lower extremity joint kinematics and external force generation are unknown. These contributions may have implications in the design of musculoskeletal models for computer simulations of running, since previous models have usually not included articulating arm segments. 3D stance phase lower extremity joint angles and ground reaction forces (GRFs) were determined for seven subjects running normally, and running under two conditions of arm restraint.

View Article and Find Full Text PDF