Publications by authors named "Richard E Toohey"

The US Transuranium and Uranium Registries is a human tissue program that collects tissues posthumously from former nuclear workers and radiochemically analyzes them for actinides such as plutonium, americium, and uranium. It was established in 1968 with the goal of advancing science and improving the safety of future workers. Roundtable participants recalled various aspects of this multidisciplinary research program, from establishing consistent autopsy protocols to comparing the registries' findings to those of other programs, such as the historical beagle dog studies and the Russian Radiobiological Human Tissue Repository.

View Article and Find Full Text PDF

Purpose: Scientific Committee 6-9 was established by the National Council on Radiation Protection and Measurements (NCRP), charged to provide guidance in the derivation of organ doses and their uncertainty, and produced a report, NCRP Report No. 178, Deriving Organ Doses and their Uncertainty for Epidemiologic Studies with a focus on the Million Person Study of Low-Dose Radiation Health Effects (MPS). This review summarizes the conclusions and recommendations of NCRP Report No.

View Article and Find Full Text PDF

Internalization of radionuclides occurs not only by inhalation, ingestion, parenteral injection (i.e., administration of radioactive material for a medical purpose), and direct transdermal absorption, but also by contaminated wounds.

View Article and Find Full Text PDF

Recently, the pseudo-Pelger Huët anomaly in peripheral blood neutrophils has been described as a new radiation-induced, stable biomarker. In this study, pseudo-Pelger Huët anomaly was examined in peripheral blood slides from a cohort of 166 former radium dial painters and ancillary personnel in the radium dial industry, 35 of whom had a marrow dose of zero above background. Members of the radium dial painter cohort ingested Ra and Ra at an early age (average age 20.

View Article and Find Full Text PDF

The 52nd Annual Meeting of the National Council on Radiation Protection and Measurements (NCRP) was held in Bethesda, MD, 11-12 April 2016, on the topic of "Meeting National Needs for Radiation Protection." This meeting was an outgrowth of the NCRP initiative "Where are the Radiation Professionals?" (WARP), which addresses looming shortages in professional personnel trained in the radiological disciplines, including but not limited to health physics, radiological engineering, radiobiology, radiochemistry, radioecology, radiation emergency response; and the medical disciplines of diagnostic and interventional radiology, radiation oncology, nuclear medicine, and medical physics. A shortage of radiation professionals has been predicted for at least 20 y but now seems to be imminent.

View Article and Find Full Text PDF

In July 2013, the National Council on Radiation Protection and Measurements convened a workshop for representatives from government, professional organizations, academia, and the private sector to discuss a potential shortage of radiation protection professionals in the not-too-distant future. This shortage manifests itself in declining membership of professional societies, decreasing enrollment in university programs in the radiological sciences, and perhaps most importantly, the imminent retirement of the largest birth cohort in American history, the so-called "baby boomer" generation. Consensus emerged that shortages already are, or soon will be, felt in government agencies (including state radiation control programs); membership in professional societies is declining precipitously; and student enrollments and university support for radiological disciplines are decreasing with no reversals expected.

View Article and Find Full Text PDF

The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG94) to develop a publication to clarify the ethical foundations of the radiological protection system it recommends. This TG identified four core ethical values which structure the system: beneficence and non-maleficence, prudence, justice, and dignity. Since the ICRP is an international organization, its recommendations and guidance should be globally applicable and acceptable.

View Article and Find Full Text PDF

The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans [the Million Worker Study (MWS)] is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time and not within seconds, as was the case for Japanese atomic bomb survivors.

View Article and Find Full Text PDF

Stakeholders have raised numerous issues regarding the scientific basis of radiation dose reconstruction for compensation. These issues can be grouped into three broad categories: data issues, dosimetry issues, and compensation issues. Data issues include demographic data of the worker, changes in site operations over time (both production and exposure control), characterization of episodic vs.

View Article and Find Full Text PDF

The US National Council on Radiation Protection and Measurements, in collaboration with the International Commission on Radiological Protection, has been developing a biokinetic and dosimetric model for radionuclide-contaminated wounds. The finalised model is described briefly in this paper, together with the scientific basis and application. The multicompartment model uses first-order linear biokinetics to describe the retention and clearance of a radionuclide deposited in a wound site using seven default retention categories.

View Article and Find Full Text PDF

Unlabelled: Given the relatively large tumor-absorbed doses reported for patients receiving radionuclide therapy, particularly radioimmunotherapy, and the relatively long pathlength of the nonpenetrating emissions of some radionuclides being used for these therapies, there exists the possibility of large absorbed doses to tissues adjacent to, surrounded by, or surrounding these tumors. Because tumors can occur adjacent to critical organs or tissues, such as arteries, nerves, pericardium, and the walls of the organs of the gastrointestinal tract, large absorbed doses to these normal tissues can lead to acute complications.

Methods: In this study, the Monte Carlo radiation transport code MCNP4b was used to simulate the deposition of energy from emissions of 2 radionuclides of interest, (131)I and (90)Y, to assess the possible magnitude of the absorbed doses in tissues adjacent to tumors.

View Article and Find Full Text PDF