Publications by authors named "Richard E Sievers"

Lipid profile changes in heart muscle have been previously linked to cardiac ischemia and myocardial infarction, but the spatial distribution of lipids and metabolites in ischemic heart remains to be fully investigated. We performed desorption electrospray ionization mass spectrometry imaging of hearts from in vivo myocardial infarction mouse models. In these mice, myocardial ischemia was induced by blood supply restriction via a permanent ligation of left anterior descending coronary artery.

View Article and Find Full Text PDF

Repairing cardiac tissue after myocardial infarction (MI) is one of the most challenging goals in tissue engineering. Following ischemic injury, significant matrix remodeling and the formation of avascular scar tissue significantly impairs cell engraftment and survival in the damaged myocardium. This limits the efficacy of cell replacement therapies, demanding strategies that reduce pathological scarring to create a suitable microenvironment for healthy tissue regeneration.

View Article and Find Full Text PDF

Background: Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke.

View Article and Find Full Text PDF

Background: We previously reported the generation of a reporter line of human embryonic stem cells (hESCs) with enhanced green fluorescent protein (eGFP) expression driven by the α-myosin heavy chain (αMHC) promoter. The GFP+/αMHC+ cells derived from this cell line behave as multipotent, human myocardial precursors (hMPs) in vitro. In this study, we evaluated the therapeutic effects of GFP+/αMHC+ cells isolated from the reporter line in a mouse model of myocardial infarction (MI).

View Article and Find Full Text PDF

Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats.

View Article and Find Full Text PDF

Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30 min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time.

View Article and Find Full Text PDF

Myocardial infarction is the main contributor to heart failure. In this study we examined whether modification of a thermo-reversible cellulose-based polymer with extracellular-matrix derived functional groups could promote wound healing and improve cardiac function in a chronic rodent model of ischemic cardiomyopathy. To beneficially influence the microenvironment of the injured myocardium, we conjugated either the RGD peptide or the HepIII peptide to the polymer.

View Article and Find Full Text PDF

Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium.

View Article and Find Full Text PDF

Nitric oxide (NO) exerts a wide range of cellular effects in the cardiovascular system. NO is short lived, but S-nitrosoglutathione (GSNO) functions as a stable intracellular bioavailable NO pool. Accordingly, increased levels can facilitate NO-mediated processes, and conversely, catabolism of GSNO by the regulatory enzyme GSNO reductase (GSNOR) can impair these processes.

View Article and Find Full Text PDF

The cardiosphere (CS) is composed of a heterogeneous population of cells, including CD45(+) cells that are bone marrow (BM)-derived. However, whether the CD45(+) cells are an essential cell component in CS formation is unknown. The current study was undertaken to address this question.

View Article and Find Full Text PDF

Therapeutic results of clinical autologous bone marrow cell (BMC) therapy trials for cardiac disease have been modest compared to results of BMC implantation into rodent hearts post-myocardial infarction (MI). In clinical trials, autologous BMCs are typically harvested from older patients who have recently suffered an MI. In contrast, experimental studies in rodent models typically utilize donor BMCs isolated from young, healthy, inbred mice that are not the recipients.

View Article and Find Full Text PDF

Background And Objectives: Clinical trials of bone-marrow (BM)-derived cells for therapy after acute myocardial infarct (MI) have been controversial. The most commonly used cells for these trials have been mononuclear cells (MNC), obtained by fractionation of BM cells (BMCs) via different protocols. In this study, we performed a head-to-head comparison of: 1) whole BMC; 2) fractionated BM (fBM) using the commonly used Ficoll protocol; 3) the extract derived from the fBM (fBM extract) versus 4) saline (HBSS) control for treatment of acute MI.

View Article and Find Full Text PDF

Background: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI). However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs) have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear.

View Article and Find Full Text PDF

Background Aims: We have shown previously that inhibition of the p38 mitogen-activated protein kinase (p38MAPK) directs the differentiation of human embryonic stem cell (hESC)-derived cardiomyocytes (hCM). We investigated the therapeutic benefits of intramyocardial injection of hCM differentiated from hESC by p38MAPK inhibition using closed-chest ultrasound-guided injection at a clinically relevant time post-myocardial infarction (MI) in a mouse model.

Methods: MI was induced in mice and the animals treated at day 3 with: (a) hCM, (b) human fetal fibroblasts (hFF) as cell control, or (c) medium control (n = 10 animals/group).

View Article and Find Full Text PDF

Delivery of bone marrow cells (BMCs) to the heart has substantially improved cardiac function in most rodent models of myocardial infarction (MI), but clinical trials of BMC therapy have led to only modest improvements. Rodent models typically involve intramyocardial injection of BMCs from distinct donor individuals who are healthy. In contrast, autologous BMCs from individuals after MI are used for clinical trials.

View Article and Find Full Text PDF

Despite advances in the treatment of pulmonary arterial hypertension, a truly restorative therapy has not been achieved. Attention has been given to circulating angiogenic cells (CACs, also termed early endothelial progenitor cells) because of their ability to home to sites of vascular injury and regenerate blood vessels. We studied the efficacy of human CAC therapy in the treatment of pulmonary arterial hypertension at two different stages of disease severity.

View Article and Find Full Text PDF

Background: Bone marrow cell treatment has been proposed as a therapy for myocardial infarction, but the optimal timing and number of injections remain unknown.

Methods: Myocardial infarction was induced in mice followed by ultrasound-guided injection of mouse bone marrow cells at different time points post myocardial infarction (Days 3, 7, and 14) as monotherapy and at Days 3+7 as "double" therapy and at Days 3+7+14 as "triple" therapy. Controls received saline injections at Day 3 and Days 3+7+14.

View Article and Find Full Text PDF

The combination of scaffold material and cell transplantation therapy has been extensively investigated in cardiac tissue engineering. However, many polymers are difficult to administer or lack the structural integrity to restore LV function. Additionally, polymers need to be biological friendly, favorably influence the microenvironment and increase stem cell retention and survival.

View Article and Find Full Text PDF

Background: The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair.

Methodology/principal Findings: Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis.

View Article and Find Full Text PDF

Aims: Current efforts to treat myocardial infarction include the delivery of cells and matrix scaffolds. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that secrete angiogenic growth factors, and fibrin has been shown to be a biomaterial that provides structural support to cells and tissues. The objective of this study was to characterize the attachment and viability of BM-MSCs in fibrin in vitro, and then to assess the efficacy of treatment with BM-MSCs in fibrin for promoting neovascularization in the chronically infarcted myocardium.

View Article and Find Full Text PDF

We compared therapeutic benefits of intramyocardial injection of unfractionated bone marrow cells (BMCs) versus BMC extract as treatments for myocardial infarction (MI), using closed-chest ultrasound-guided injection at a clinically relevant time post-MI. MI was induced in mice and the animals treated at day 3 with either: (i) BMCs from green fluorescent protein (GFP)-expressing mice (n = 14), (ii) BMC extract (n = 14), or (iii) saline control (n = 14). Six animals per group were used for histology at day 6 and the rest followed to day 28 for functional analysis.

View Article and Find Full Text PDF

Objectives: Various approaches to myocardial reconstruction have been developed for the treatment of congestive heart failure resulting from ischemic cardiomyopathy.

Methods: In this study we determined whether in situ application of polymers could reshape left ventricular geometry in a chronic rodent model of ischemic cardiomyopathy.

Results: We demonstrate that alginate and fibrin can augment left ventricular wall thickness, resulting in reconstruction of left ventricular geometry and improvement of cardiac function.

View Article and Find Full Text PDF

Congestive heart failure (CHF) is a chronic disease with a high mortality rate. Managing CHF patients has been one of the most severe health care problems for years. Scaffold materials have been predominantly investigated in acute myocardial infarction (MI) studies and have shown promising improvement in LV function.

View Article and Find Full Text PDF

The conductive polymer polypyrrole was blended with alginate to investigate its potential in tissue engineering applications. This study showed that increasing the polypyrrole content altered the macroscopic structural morphology of the polymer blend scaffold, but did not alter the overall conductivity of the polymer blend, which was 10(-2)S/cm(2). Culturing of human umbilical vein endothelial cells on the polymer blend scaffolds showed that addition of polypyrrole mediated cell attachment to the polymer scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a special protein called VEGF-B affects the growth of blood vessels in heart problems using mice with and without VEGF-B.
  • They found that mice without VEGF-B had trouble growing new blood vessels in the heart after a blockage, while mice with extra VEGF-B did better at growing new vessels.
  • However, VEGF-B didn’t seem to help with blood vessel growth in other parts of the body like skin and lungs, suggesting it mainly helps the heart.
View Article and Find Full Text PDF