The () stopping rule, which terminates a (CAT) when the SE is less than a threshold, is effective when there are informative questions for all trait levels. However, in domains such as patient reported outcomes, the items in a bank might all target one end of the trait continuum (e.g.
View Article and Find Full Text PDFBackground: Even though we have established a few risk factors for metastatic breast cancer (MBC) through epidemiologic studies, these risk factors have not proven to be effective in predicting an individual's risk of developing metastasis. Therefore, identifying critical risk factors for MBC continues to be a major research imperative, and one which can lead to advances in breast cancer clinical care. The objective of this research is to leverage Bayesian Networks (BN) and information theory to identify key risk factors for breast cancer metastasis from data.
View Article and Find Full Text PDFObjective: The Patient Reported Outcomes Measurement Information System (PROMIS) initiative developed an array of patient reported outcome (PRO) measures. To reduce the number of questions administered, PROMIS utilizes unidimensional item response theory and unidimensional computer adaptive testing (UCAT), which means a separate set of questions is administered for each measured trait. Multidimensional item response theory (MIRT) and multidimensional computer adaptive testing (MCAT) simultaneously assess correlated traits.
View Article and Find Full Text PDFBrief Bioinform
November 2015
We are in the era of abundant 'big' or 'high-dimensional' data. These data afford us the opportunity to discover predictors of an event of interest, and to estimate occurrence of the event based on values of these predictors. For example, 'genome-wide association studies' examine millions of single-nucleotide polymorphisms (SNPs), along with disease status.
View Article and Find Full Text PDFBackground: Studies show that thousands of genes are associated with prognosis of breast cancer. Towards utilizing available genetic data, efforts have been made to predict outcomes using gene expression data, and a number of commercial products have been developed. These products have the following shortcomings: 1) They use the Cox model for prediction.
View Article and Find Full Text PDFGenet Epidemiol
March 2015
Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease.
View Article and Find Full Text PDFObjective: The objective of this investigation is to evaluate binary prediction methods for predicting disease status using high-dimensional genomic data. The central hypothesis is that the Bayesian network (BN)-based method called efficient Bayesian multivariate classifier (EBMC) will do well at this task because EBMC builds on BN-based methods that have performed well at learning epistatic interactions.
Method: We evaluate how well eight methods perform binary prediction using high-dimensional discrete genomic datasets containing epistatic interactions.
Background: The interaction between loci to affect phenotype is called epistasis. It is strict epistasis if no proper subset of the interacting loci exhibits a marginal effect. For many diseases, it is likely that unknown epistatic interactions affect disease susceptibility.
View Article and Find Full Text PDFBackground: Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is Multifactor Dimensionality Reduction (MDR).
View Article and Find Full Text PDFGenetic epidemiologists strive to determine the genetic profile of diseases. Epistasis is the interaction between two or more genes to affect phenotype. Due to the often non-linearity of the interaction, it is difficult to detect statistical patterns of epistasis.
View Article and Find Full Text PDF