Publications by authors named "Richard E Johnsson"

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway.

View Article and Find Full Text PDF

Galectin-8 contains two different carbohydrate recognition domains (CRDs). Selective inhibitors for at least one CRD are desirable for galectin-8 biology studies and potentially for pharmacological purposes. Structure-guided design led to the discovery of potent and selective glycomimetic-heterocycle hybrid ligands, with a 4-(-bromophenyl)phthalazinone derivative displaying a 34 μM for galectin-8N (N-terminal CRD), no binding to galectin-8C (C-terminal CRD), -1, -3, -4N, -7, -9C, or -9N, and >40-fold selectivity over galectin-4C.

View Article and Find Full Text PDF

Solid-phase peptide synthesis (SPPS) is the prevailing method for synthesizing research peptides today. However, SPPS is associated with a significant environmental concern due to the utilization of hazardous solvents such as N,N-dimethylformamide (DMF) or N-methylpyrrolidone, which generate substantial waste. In light of this, our research endeavors to identify more environmentally friendly solvents for SPPS.

View Article and Find Full Text PDF

Galectin-3 is a carbohydrate-binding protein central to regulating mechanisms of diseases such as fibrosis, cancer, metabolic, inflammatory, and heart disease. We recently found a high affinity (nM) thiodigalactoside GB0139 which currently is in clinical development (PhIIb) as an inhaled treatment of idiopathic pulmonary fibrosis. To enable treatment of systemically galectin-3 driven disease, we here present the first series of selective galectin-3 inhibitors combining high affinity (nM) with oral bioavailability.

View Article and Find Full Text PDF

In search for novel antibacterial compounds, bacterial sialic acid uptake inhibition represents a promising strategy. Sialic acid plays a critical role for growth and colonisation of several pathogenic bacteria, and its uptake inhibition in bacteria was recently demonstrated to be a viable strategy by targeting the SiaT sodium solute symporters from Proteus mirabilis and Staphylococcus aureus. Here we report the design, synthesis and evaluation of potential sialic acid uptake inhibitors bearing 4-N-piperidine and piperazine moieties.

View Article and Find Full Text PDF

Antibiotic resistance is a major worldwide concern, and new drugs with mechanistically novel modes of action are urgently needed. Here, we report the structure-based drug design, synthesis, and evaluation in vitro and in cellular systems of sialic acid derivatives able to inhibit the bacterial sialic acid symporter SiaT. We designed and synthesized 21 sialic acid derivatives and screened their affinity for SiaT by a thermal shift assay and elucidated the inhibitory mechanism through binding thermodynamics, computational methods, and inhibitory kinetic studies.

View Article and Find Full Text PDF

The design of small and high-affinity lectin inhibitors remains a major challenge because the natural ligand binding sites of lectin are often shallow and have polar character. Herein we report that derivatizing galactose with un-natural structural elements that form multiple non-natural lectin-ligand interactions (orthogonal multipolar fluorine-amide, phenyl-arginine, sulfur-π, and halogen bond) can provide inhibitors with extraordinary affinity (low nanomolar) for the model lectin, galectin-3, which is more than five orders of magnitude higher than the parent galactose; moreover, is selective over other galectins.

View Article and Find Full Text PDF

Antibiotic resistance is a serious threat against humankind and the need for new therapeutics is crucial. Without working antibiotics, diseases that we thought were extinct will come back. In this paper two new mannitol bisphosphate analogs, 1,6-dideoxy-1,6-diphosphoramidate mannitol and 1,6-dideoxy-1,6-dimethansulfonamide mannitol, have been synthesized and evaluated as potential inhibitors of the enzyme GmhB in the biosynthesis of lipopolysaccharides.

View Article and Find Full Text PDF

Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e.

View Article and Find Full Text PDF