FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisticated algorithms.
View Article and Find Full Text PDFA substantial body of evidence suggests the genetic heterogeneous pattern and multiple pathways in colorectal cancer initiation and progression. In this study, we construct a branching tree and multiple distance-based tree models to elucidate these genetic patterns and pathways in colorectal cancer by using a data set comprised of 244 cases of comparative genomic hybridization. We identify the six most common gains of chromosomal regions of 7p (37.
View Article and Find Full Text PDFCurr Protoc Bioinformatics
October 2006
Neighbor Joining (NJ), FastME, and other distance-based programs including BIONJ, WEIGHBOR, and (to some extent) FITCH, are fast methods to build phylogenetic trees. This makes them particularly effective for large-scale studies or for bootstrap analysis, which require runs on multiple data sets. Like maximum likelihood methods, distance methods are based on a sequence evolution model that is used to estimate the matrix of pairwise evolutionary distances.
View Article and Find Full Text PDFAim: To construct tree models for classification of diffuse large B-cell lymphomas (DLBCL) by chromosome copy numbers, to compare them with cDNA microarray classification, and to explore models of multi-gene, multi-step and multi-pathway processes of DLBCL tumorigenesis.
Methods: Maximum-weight branching and distance-based models were constructed based on the comparative genomic hybridization (CGH) data of 123 DLBCL samples using the established methods and software of Desper et al. A maximum likelihood tree model was also used to analyze the data.
Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells. Irregularities in chromosomal copy number caused by missegregations of chromosomes during mitosis can be visualized by cytogenetic techniques including fluorescence in situ hybridization (FISH), spectral karyotyping (SKY) and comparative genomic hybridization (CGH). In the current work, we consider the propagation of irregular copy numbers throughout a cell population as the individual cells progress through ordinary mitotic cell cycles.
View Article and Find Full Text PDFA previously undefined transcript with significant homology to the pseudo-alpha2 region of the alpha-globin locus on human chromosome 16 was detected as part of an effort to better define the transcriptional profiles of human reticulocytes. Cloning and sequencing of that transcript (GenBank AY698022; named mu-globin) revealed an insert with a 423-nucleotide open reading frame. BLASTP and ClustalW and phylogenetic analyses of the predicted protein demonstrated a high level of homology with the avian alpha-D globin.
View Article and Find Full Text PDFGenes Chromosomes Cancer
August 2004
Pathogenesis of nasopharyngeal carcinoma (NPC) is a multistep and multipathway process that cannot be fully explained by a fixed linear progression model. We used distance-based and branching-tree methods to construct more general tree-like models for NPC carcinogenesis from 170 comparative genomic hybridization (CGH) samples previously published in five smaller studies. Imbalances were classified into "overlap regions," each containing the most commonly gained or lost band on each chromosome arm as well as adjacent bands that were gained or lost almost as often.
View Article and Find Full Text PDFTumor classification is a well-studied problem in the field of bioinformatics. Developments in the field of DNA chip design have now made it possible to measure the expression levels of thousands of genes in sample tissue from healthy cell lines or tumors. A number of studies have examined the problems of tumor classification: class discovery, the problem of defining a number of classes of tumors using the data from a DNA chip, and class prediction, the problem of accurately classifying an unknown tumor, given expression data from the unknown tumor and from a learning set.
View Article and Find Full Text PDFDue to its speed, the distance approach remains the best hope for building phylogenies on very large sets of taxa. Recently (R. Desper and O.
View Article and Find Full Text PDFThe Minimum Evolution (ME) approach to phylogeny estimation has been shown to be statistically consistent when it is used in conjunction with ordinary least-squares (OLS) fitting of a metric to a tree structure. The traditional approach to using ME has been to start with the Neighbor Joining (NJ) topology for a given matrix and then do a topological search from that starting point. The first stage requires O(n(3)) time, where n is the number of taxa, while the current implementations of the second are in O(p n(3)) or more, where p is the number of swaps performed by the program.
View Article and Find Full Text PDF