Publications by authors named "Richard Deblock"

Behavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated case, the linear response of a given system to an external field is described by the fluctuation-dissipation relations based on the two-body correlations in the equilibrium. However, to explore nonlinear non-equilibrium behaviors of the system beyond this well-established regime, the role of higher order correlations starting from the three-body correlations must be revealed.

View Article and Find Full Text PDF

The sensitivity of shot noise to the interplay between Kondo correlations and superconductivity is investigated in a carbon nanotube quantum dot connected to superconducting electrodes. Depending on the gate voltage, the SU(2) and SU(4) Kondo unitary regimes can be clearly identified. We observe enhancement of the shot noise via the Fano factor in the superconducting state.

View Article and Find Full Text PDF
Article Synopsis
  • Topology now helps describe the electronic structure of crystalline solids, with a focus on surface states of bulk insulating three-dimensional topological crystals.
  • The study reveals that bismuth, usually seen as topologically trivial, actually has unique hinge states that are topologically protected and contribute to conducting modes instead of just surface states.
  • The findings are backed by theoretical analysis and experiments, including scanning-tunneling spectroscopy and Josephson interferometry, confirming bismuth's classification as a higher-order topological insulator.
View Article and Find Full Text PDF

The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance.

View Article and Find Full Text PDF

Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover.

View Article and Find Full Text PDF

The electrical noise of mesoscopic devices can be strongly influenced by the quantum motion of electrons. To probe this effect, we have measured the current fluctuations at high frequency (5 to 90 gigahertz) using a superconductor-insulator-superconductor tunnel junction as an on-chip spectrum analyzer. By coupling this frequency-resolved noise detector to a quantum device, we can measure the high-frequency, nonsymmetrized noise as demonstrated for a Josephson junction.

View Article and Find Full Text PDF