True-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators.
View Article and Find Full Text PDFWe experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the benefits and challenges of extracting information at two distinct points within the demodulation process: immediately after timing recovery and immediately prior to symbol unmapping. For the former, we use 3D Stokes-space based signal representations.
View Article and Find Full Text PDFCompact electro-optical modulators are demonstrated on thin films of lithium niobate on silicon operating up to 50 GHz. The half-wave voltage length product of the high-performance devices is 3.1 V.
View Article and Find Full Text PDF