Publications by authors named "Richard D Saunders"

Movement in a strong static magnetic field induces electric fields in a human body, which may result in various sensory perceptions such as vertigo, nausea, magnetic phosphenes, and a metallic taste in the mouth. These sensory perceptions have been observed by patients and medical staff in the vicinity of modern diagnostic magnetic resonance (MR) equipment and may be distracting if they were to affect the balance and eye-hand coordination of, for example, a physician carrying out a medical operation during MR scanning. The stimulation of peripheral nerve tissue by a more intense induced electric field is also theoretically possible but has not been reported to result from such movement.

View Article and Find Full Text PDF

It is well understood that electric currents applied directly to the body can stimulate peripheral nerve and muscle tissue; such effects can be fatal if breathing is inhibited or ventricular fibrillation is induced. Exposure to extremely low frequency electric and magnetic fields will also induce electric fields and currents within the body, but these are almost always much lower than those that can stimulate peripheral nerve tissue. Guidance on exposure to such fields is based on the avoidance of acute effects in the central nervous system.

View Article and Find Full Text PDF

Recently, the International EMF Project of the World Health Organization (WHO) published an Environmental Health Criteria monograph on static electric and magnetic fields. In the present paper a short overview is given of the biological and health effects discussed in this document. The main conclusions are that no acute effects other than transient phenomena such as vertigo and nausea have been observed with exposure to static magnetic flux densities up to 8 T.

View Article and Find Full Text PDF

This study summarizes the possible effects on prenatal development of physiologically weak electric fields induced in the body by exposure to extremely low frequency (ELF) electromagnetic fields and of elevated temperature levels that might result from exposure to radiofrequency (RF) radiation. Both topics have been discussed at recent international workshops organized by WHO in collaboration with other bodies. Mammalian development is characterized by a highly ordered sequence of cell proliferation and differentiation, migration, and programmed cell death.

View Article and Find Full Text PDF

Exposure to extremely low frequency electric and magnetic fields will induce electric fields and currents within the body, but these are almost always much lower than those that can stimulate peripheral nerve tissue. Guidance on exposure to such fields has been published by NRPB and ICNIRP, which is based on the avoidance of acute effects in the central nervous system. Weak electric field effects, below action potential thresholds, have been demonstrated in vitro in brain slice preparations; thresholds can be estimated to be above about 1 mV mm(-1) (around 100 mA m(-2), taking a brain tissue conductivity of around 0.

View Article and Find Full Text PDF