Publications by authors named "Richard D S Dixon"

Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking.

View Article and Find Full Text PDF

As part of our NMR structure determination of the palladin Ig3 domain, we report nearly complete NMR chemical shift assignments for the (1)H, (13)C, and (15)N nuclei.

View Article and Find Full Text PDF

Palladin is a recently described phosphoprotein that plays an important role in cell adhesion and motility. Previous studies have shown that palladin overexpression results in profound changes in actin organization in cultured cells. Palladin binds to the actin-associated proteins alpha-actinin, vasodilator-stimulated phosphoprotein, profilin, Eps8, and ezrin, suggesting that it may affect actin organization indirectly.

View Article and Find Full Text PDF

Mounting evidence suggests that the focal adhesion targeting (FAT) domain, an antiparallel four-helix bundle, exists in alternative conformations that may modulate phosphorylation, ligand binding, and the subcellular localization of focal adhesion kinase (FAK). In order to characterize the conformational dynamics of the FAT domain, we have developed a novel method for reconstructing the folding pathway of the FAT domain by using discrete molecular dynamics (DMD) simulations, with free energy constraints derived from NMR hydrogen exchange data. The DMD simulations detect a folding intermediate, in which a cooperative unfolding event causes helix 1 to lose helical character while separating from the helix bundle.

View Article and Find Full Text PDF