AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species.
View Article and Find Full Text PDFThe viability of spatially structured populations depends on the abundance and connectivity between subpopulations of breeding adults. Yet, for many species, both are extremely difficult to assess. The speartooth shark is a critically endangered elasmobranch inhabiting tropical rivers with only three adults ever recorded in Australia.
View Article and Find Full Text PDFOn coral reefs, changes in the cover and relative abundance of hard coral taxa often follow disturbance. Although the ecological responses of common coral taxa have been well documented, little is known about the ecological responses of uncommon coral taxa or of coral morphological groups across multiple adjacent reef zones. We used Multivariate Auto-Regressive State-Space modelling to assess the rate and direction of change of hard coral cover across a variety of coral genera, growth forms, and susceptibility to bleaching and physical damage covering multiple reef zones at northern Ningaloo Reef in Western Australia.
View Article and Find Full Text PDFWith recent advances in sequencing technology, genomic data are changing how important conservation management decisions are made. Applications such as Close-Kin Mark-Recapture demand large amounts of data to estimate population size and structure, and their full potential can only be realised through ongoing improvements in genotyping strategies. Here we introduce DArTcap, a cost-efficient method that combines DArTseq and sequence capture, and illustrate its use in a high resolution population analysis of Glyphis garricki, a rare, poorly known and threatened euryhaline shark.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2020
Unlabelled: Ecologists often need to make choices about what body parts (tissues or organs) of an animal to sample. The decision is typically guided by the need to treat animals as humanely as possible, as well as the information that different body parts can provide. When using stable isotopes, decisions are also influenced by whether specimens would require preservation, and whether they have properties (such as high lipid concentrations) that would influence measurements.
View Article and Find Full Text PDFOne of the most robust metrics for assessing the effectiveness of protected areas is the temporal trend in the abundance of the species they are designed to protect. We surveyed coral-reef fish and living hard coral in and adjacent to a sanctuary zone (SZ: where all forms of fishing are prohibited) in the World Heritage-listed Ningaloo Marine Park during a 10-year period. There were generally more individuals and greater biomass of many fish taxa (especially emperors and parrotfish) in the SZ than the adjacent recreation zone (RZ: where recreational fishing is allowed) - so log response ratios of abundance were usually positive in each year.
View Article and Find Full Text PDFThe optimal design of reserve networks and fisheries closures depends on species occurrence information and knowledge of how anthropogenic impacts interact with the species concerned. However, challenges in surveying mobile and cryptic species over adequate spatial and temporal scales can mask the importance of particular habitats, leading to uncertainty about which areas to protect to optimize conservation efforts. We investigated how telemetry-derived locations can help guide the scale and timing of fisheries closures with the aim of reducing threatened species bycatch.
View Article and Find Full Text PDFMeasuring population connectivity is a critical task in conservation biology. While genetic markers can provide reliable long-term historical estimates of population connectivity, scientists are still limited in their ability to determine contemporary patterns of gene flow, the most practical time frame for management. Here, we tackled this issue by developing a new approach that only requires juvenile sampling at a single time period.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
November 2016
In this study, we describe the first complete mitochondrial sequence for the Endangered Narrow Sawfish Anoxypristis cuspidata. It is 17,243 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and a control region with the common vertebrate mitogenomic organization. A total of 30 bp overlaps and 28 bp short intergenic spaces are located between all genes.
View Article and Find Full Text PDFBackground: Mitochondrial DNA markers have long been used to identify population boundaries and are now a standard tool in conservation biology. In elasmobranchs, evolutionary rates of mitochondrial genes are low and variation between distinct populations can be hard to detect with commonly used control region sequencing or other single gene approaches. In this study we sequenced the whole mitogenome of 93 Critically Endangered Speartooth Shark Glyphis glyphis from the last three river drainages they inhabit in northern Australia.
View Article and Find Full Text PDFOff the Ningaloo coast of North West Western Australia, Spangled Emperor Lethrinus nebulosus are among the most highly targeted recreational fish species. The Ningaloo Reef Marine Park comprises an area of 4,566 km2 of which 34% is protected from fishing by 18 no-take sanctuary zones ranging in size from 0.08-44.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
October 2016
In this manuscript we describe the first complete mitochondrial sequence for the Near Threatened Graceful Shark Carcharhinus amblyrhynchoides. It is 16,705 bp in length, consists of two rRNA genes, 22 tRNA genes, 13 protein-coding genes and one control region with the typical gene arrangement pattern and translate orientation in vertebrates. The overall base composition is 31.
View Article and Find Full Text PDFThis study examined the effect of transfer to increased environmental salinity on the circulating levels of angiotensin II (ANG II), C-type natriuretic peptide (CNP), and arginine vasotocin (AVT) in the euryhaline elasmobranch, Carcharhinus leucas. Plasma levels of ANG II and CNP were significantly increased in C. leucas chronically acclimated to seawater (SW) in comparison to freshwater (FW) acclimated fish.
View Article and Find Full Text PDFJ Exp Zool A Comp Exp Biol
October 2005
Plasma urea levels and hepatic urea production in the euryhaline bull shark, Carcharhinus leucas, acclimated to freshwater and seawater environments were measured. It was found that plasma urea concentration increased with salinity and that this increase was, in part, the result of a significant increase in hepatic production of urea. This study provides direct evidence that hepatic production of urea plays an important role in the osmoregulatory strategy of C.
View Article and Find Full Text PDFThe present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C. leucas were determined by RACE methods.
View Article and Find Full Text PDFThis study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l(-1) kg(-1)) were acclimated to SW (980-1,000 mOsm l(-1) kg(-1)) over 16 days.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2004
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2003
Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the 'osmoregulatory ballast' of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments.
View Article and Find Full Text PDF