The Bayesian brain hypothesis is one of the most influential ideas in neuroscience. However, unstated differences in how Bayesian ideas are operationalized make it difficult to draw general conclusions about how Bayesian computations map onto neural circuits. Here, we identify one such unstated difference: some theories ask how neural circuits could recover information about the world from sensory neural activity (Bayesian decoding), whereas others ask how neural circuits could implement inference in an internal model (Bayesian encoding).
View Article and Find Full Text PDFA central goal of systems neuroscience is to understand how populations of sensory neurons encode and relay information to the rest of the brain. Three key quantities of interest are ) how mean neural activity depends on the stimulus (sensitivity), ) how neural activity (co)varies around the mean (noise correlations), and ) how predictive these variations are of the subject's behavior (choice probability). Previous empirical work suggests that both choice probability and noise correlations are affected by task training, with decision-related information fed back to sensory areas and aligned to neural sensitivity on a task-by-task basis.
View Article and Find Full Text PDFPerception is often characterized computationally as an inference process in which uncertain or ambiguous sensory inputs are combined with prior expectations. Although behavioral studies have shown that observers can change their prior expectations in the context of a task, robust neural signatures of task-specific priors have been elusive. Here, we analytically derive such signatures under the general assumption that the responses of sensory neurons encode posterior beliefs that combine sensory inputs with task-specific expectations.
View Article and Find Full Text PDFMaking good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2017
The concept of a tuning curve has been central for our understanding of how the responses of cortical neurons depend on external stimuli. Here, we describe how the influence of unobserved internal variables on sensory responses, in particular correlated neural variability, can be understood in a similar framework. We suggest that this will lead to deeper insights into the relationship between stimulus, sensory responses, and behavior.
View Article and Find Full Text PDF