Phys Rev E Stat Nonlin Soft Matter Phys
December 2013
Brownian particles in random potentials show an extended regime of subdiffusive dynamics at intermediate times. The asymptotic diffusive behavior is often established at very long times and thus cannot be accessed in experiments or simulations. For the case of one-dimensional random potentials with Gaussian distributed energies, we present a detailed analysis of experimental and simulation data.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
The dynamics of individual colloidal particles in random potential energy landscapes was investigated experimentally and by Monte Carlo simulations. The value of the potential at each point in the two-dimensional energy landscape follows a Gaussian distribution. The width of the distribution, and hence the degree of roughness of the energy landscape, was varied and its effect on the particle dynamics studied.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2012
Using Monte Carlo simulations, individual Brownian particles have been investigated in a one-dimensional random energy landscape whose energy levels are selected from a Gaussian distribution. The standard deviation of the distribution determines the roughness of the noise-like potential and was varied in the simulations. After initialization, which was done by an instantaneous or infinitely slow (annealed) quench, the particle dynamics were followed.
View Article and Find Full Text PDFA spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated.
View Article and Find Full Text PDF