Publications by authors named "Richard D Bowden"

Terrestrial dissolved organic matter (DOM) in forested watersheds is a known precursor of disinfection byproducts (DBPs) in drinking water. Although the characteristics of terrestrial DOM may change with increasing nitrogen (N) deposition in forests, how these changes alter formation potential and toxicity of DBPs remains unexplored. We analyzed the speciation and toxicity of DBPs from chlorination of DOM derived from soils (O, A, and B horizons) in an experimental temperate forest with 22 years of N addition.

View Article and Find Full Text PDF

Ecological research networks functioning across climatic and edaphic gradients are critical for improving predictive understanding of biogeochemical cycles at local through global scales. One international network, the Detrital Input and Removal Treatment (DIRT) Project, was established to assess how rates and sources of plant litter inputs influence accumulations or losses of organic matter in forest soils. DIRT employs chronic additions and exclusions of aboveground litter inputs and exclusion of root ingrowth to permanent plots at eight forested and two shrub/grass sites to investigate how soil organic matter (SOM) dynamics are influenced by plant detrital inputs across ecosystem and soil types.

View Article and Find Full Text PDF

Understanding soil organic matter (OM) biogeochemistry at the molecular-level is essential for assessing potential impacts from management practices and climate change on shifts in soil carbon storage. Biomarker analyses and nuclear magnetic resonance (NMR) spectroscopy were used in an ongoing detrital input and removal treatment experiment in a temperate deciduous forest in Pennsylvania, USA, to examine how above- and below-ground plant inputs control soil OM quantity and quality at the molecular-level. From plant material to surface soils, the free acyclic lipids and cutin, suberin, and lignin biomarkers were preferentially retained over free sugars and free cyclic lipids.

View Article and Find Full Text PDF

Stress within tree roots may influence whole-tree responses to nutrient deficiencies or toxic ion accumulation, but the mechanisms that govern root responses to the belowground chemical environment are poorly quantified. Currently, root production is modeled using rates of forest production and stoichiometry, but this approach alone may be insufficient to forecast variability in forest responses when physical and chemical stressors alter root lifespan, rooting depth or mycorrhizal colonization directly. Here, we review key research priorities for improving predictions of tree responses to changes in the belowground biogeochemical environment resulting from nitrogen deposition, including: limits of the optimum allocation paradigm, root physiological stress and lifespan, contingency effects that determine threshold responses across broad gradients, coupled water-biogeochemical interactions on roots, mycorrhizal dynamics that mediate root resilience and model frameworks to better simulate root feedbacks to aboveground function.

View Article and Find Full Text PDF

The Comet assay (single cell gel electrophoresis assay) measures DNA strand breaks in individual cells. In the assay cells are embedded in agarose, lysed, and electrophoresed under low voltage, allowing migration of damaged DNA. The DNA is stained and subsequently viewed with an epifluorescent microscope.

View Article and Find Full Text PDF