Publications by authors named "Richard Cubberley"

Next Generation Risk Assessment (NGRA) is an exposure-led approach to safety assessment that uses New Approach Methodologies (NAMs). Application of NGRA has been largely restricted to assessments of consumer use of cosmetics and is not currently implemented in occupational safety assessments, e.g.

View Article and Find Full Text PDF

Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue).

View Article and Find Full Text PDF

In this study water and sediment samples, collected from the River Nene (Northamptonshire) at several sites in the vicinity of the Great Billing sewage treatment plant (STP), were analysed for triethanolamine quaternary compounds (TEAQ, ester quats). A method was developed using liquid chromatography tandem mass spectrometry (LC/MS/MS) with a electrospray ionisation source (ESI). Ten components were determined using a characterised commercial sample of Tallow TEAQ as a standard.

View Article and Find Full Text PDF

Estimating human exposure in the safety assessment of chemicals is crucial. Physiologically based kinetic (PBK) models which combine information on exposure, physiology, and chemical properties, describing the absorption, distribution, metabolism, and excretion (ADME) processes of a chemical, can be used to calculate internal exposure metrics such as maximum concentration and area under the concentration-time curve in plasma or tissues of a test chemical in next-generation risk assessment. This article demonstrates the development of PBK models for 3 UV filters, specifically octyl methoxycinnamate, octocrylene, and 4-methylbenzylidene camphor.

View Article and Find Full Text PDF

Combined with in vitro bioactivity data, physiologically based kinetic (PBK) models has increasing applications in next generation risk assessment for animal-free safety decision making. A tiered framework of building PBK models for such application has been developed with increasing complexity and refinements, as model parameters determined in silico, in vitro, and with human pharmacokinetic data become progressively available. PBK modelling has been widely applied for oral/intravenous administration, but less so on topically applied chemicals.

View Article and Find Full Text PDF

Haptenation of model nucleophiles, representing the key MIE in skin sensitisation, is routinely measured in chemico to provide data for skin allergy risk assessment. Better understanding of the dynamics of haptenation in human skin could provide the metrics required to improve determination of sensitiser potency for risk assessment of chemicals. We have previously demonstrated the applicability and sensitivity of the dual stable isotope labelling approach to detect low level haptenation in complex mixtures of proteins.

View Article and Find Full Text PDF

Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion.

View Article and Find Full Text PDF

The abundance of xenobiotic metabolizing enzymes (XMEs) is different in the skin and liver; therefore, it is important to differentiate between liver and skin metabolism when applying the information to safety assessment of topically applied ingredients in cosmetics. Here, we have employed EpiSkin™ S9 and human liver S9 to investigate the organ-specific metabolic stability of 47 cosmetic-relevant chemicals. The rank order of the metabolic rate of six chemicals in primary human hepatocytes and liver S9 matched relatively well.

View Article and Find Full Text PDF

OECD test guideline 428 compliant protocol using human skin was used to test the penetration of 56 cosmetic-relevant chemicals. The penetration of finite doses (10 μL/cm ) of chemicals was measured over 24 hours. The dermal delivery (DD) (amount in the epidermis, dermis and receptor fluid [RF]) ranged between 0.

View Article and Find Full Text PDF

An understanding of the bioavailability of topically applied cosmetics ingredients is key to predicting their local skin and systemic toxicity and making a safety assessment. We investigated whether short-term incubations with S9 from the reconstructed epidermal skin model, EpiSkin™, would give an indication of the rate of chemical metabolism and produce similar metabolites to those formed in incubations with human skin explants. Both have advantages: EpiSkin™ S9 is a higher-throughput assay, while the human skin explant model represents a longer incubation duration (24 hours) model integrating cutaneous distribution with metabolite formation.

View Article and Find Full Text PDF

The potential risk of skin sensitisation, associated with the development of allergic contact dermatitis (ACD), is a consideration in the safety assessment of new ingredients for use in personal care products. Protein haptenation in skin by sensitising chemicals is the molecular initiating event causative of skin sensitisation. Current methods for monitoring skin sensitisation rely on limited reactivity assays, motivating interest in the development of proteomic approaches to characterise the skin haptenome.

View Article and Find Full Text PDF

Background: We tested the cutaneous distribution of 50 chemicals in frozen human skin. The mass balance (MB) values for 48% of the chemicals were < 90%, possibly due to evaporation.

Methods: We confirmed the reduction in MB was due to evaporation for two chemicals tested in skin penetration experiments using a carbon filter above the skin to trap airborne chemical.

View Article and Find Full Text PDF

Understanding skin metabolism is key to improve in vitro to in vivo extrapolations used to inform risk assessments of topically applied products. However, published literature is scarce and usually covers a limited and non-representative number of donors. We developed a protocol to handle and store ex vivo skin samples post-surgery and prepare skin S9 fractions to measure the metabolic activity of Phase II enzymes.

View Article and Find Full Text PDF

When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context.

View Article and Find Full Text PDF

Skin sensitization associated with the development of allergic contact dermatitis occurs via a number of specific key events at the cellular level. The molecular initiating event (MIE), the first in the sequence of these events, occurs after exposure of the skin to an electrophilic chemical, causing the irreversible haptenation of proteins within skin. Characterization of this MIE is a key step in elucidating the skin sensitization adverse outcome pathway and is essential to providing parameters for mathematical models to predict the capacity of a chemical to cause sensitization.

View Article and Find Full Text PDF

Background: The Cosmetics Europe ADME Task Force is developing in vitro and in silico tools for predicting skin and systemic concentrations after topical application of cosmetic ingredients. There are conflicting reports as to whether the freezing process affects the penetration of chemicals; therefore, we evaluated whether the storage of human skin used in our studies (8-12 weeks at -20°C) affected the penetration of model chemicals.

Methods: Finite doses of trans-cinnamic acid (TCA), benzoic acid (BA), and 6-methylcoumarin (6MC) (non-volatile, non-protein reactive and metabolically stable in skin) were applied to fresh and thawed frozen skin from the same donors.

View Article and Find Full Text PDF

Toxicological risk assessments in the 21 century are increasingly being driven by the Adverse Outcome Pathways (AOP) conceptual framework in which the Molecular Initiating Event (MIE) is of fundamental importance to pathway progression. For those MIEs that involve covalent chemical reactions, such as protein haptenation, determination of relative rates and mechanisms of reactions is a prerequisite for their understanding. The utility of NMR spectroscopy as an experimental technique for effectively providing reaction rate and mechanistic information for early assessment of likely MIE(s) has been demonstrated.

View Article and Find Full Text PDF

The risk of contact sensitization is a major consideration in the development of new formulations for personal care products. However, developing a mechanistic approach for non-animal risk assessment requires further understanding of haptenation of skin proteins by sensitizing chemicals, which is the molecular initiating event causative of skin sensitization. The non-stoichiometric nature of protein haptenation results in relatively low levels of modification, often of low abundant proteins, presenting a major challenge for their assignment in complex biological matrices such as skin.

View Article and Find Full Text PDF

As documented in the recent OECD report 'the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins' (OECD, 2012), the chemical and biological events driving the induction of human skin sensitisation have been investigated for many years and are now well understood. Several non-animal test methods have been developed to predict sensitiser potential by measuring the impact of chemical sensitisers on these key events (Adler et al., 2011; Maxwell et al.

View Article and Find Full Text PDF

Unknown substances, not previously observed, are frequently detected in foods by quality control laboratories. In many cases, the assessment of these 'new' substances requires additional chemical analysis for their identification prior to assessing risk. This identification procedure can be time-consuming, expensive and in some instances difficult.

View Article and Find Full Text PDF