This case study aims to describe the dilemma faced when exposing rats to very high concentrations of fine, pulverulent materials for acute inhalation studies and to address the regulatory question of whether the effects seen here are relevant to humans and the subject of classification according to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Many powders match the definition of nanomaterials in the EU; therefore, information on acute inhalation testing of powders up to the GHS cutoff of 5 mg/L is required. However, testing rats at such a high aerosol concentration can cause physical obstruction of the airways and even mortality by suffocation.
View Article and Find Full Text PDFThe extrathoracic oral airway is not only a major mechanical barrier for pharmaceutical aerosols to reach the lung but also a major source of variability in lung deposition. Using computational fluid dynamics, deposition of 1−30 µm particles was predicted in 11 CT-based models of the oral airways of adults. Simulations were performed for mouth breathing during both inspiration and expiration at two steady-state flow rates representative of resting/nebulizer use (18 L/min) and of dry powder inhaler (DPI) use (45 L/min).
View Article and Find Full Text PDFNew approach methodologies (NAMs) are emerging chemical safety assessment tools consisting of in vitro and in silico (computational) methodologies intended to reduce, refine, or replace (3R) various in vivo animal testing methods traditionally used for risk assessment. Significant progress has been made toward the adoption of NAMs for human health and environmental toxicity assessment. However, additional efforts are needed to expand their development and their use in regulatory decision making.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
August 2022
The US Environmental Protection Agency (USEPA) and other regulatory authorities have been working to utilize in vitro studies with human cells and in silico modelling to reduce the use of vertebrate animals for evaluating chemical risk. Using the Source-to-Outcome framework, a novel mathematical procedure was developed to estimate the human equivalent concentration (HEC) for inhalation risk assessment based upon the relevant aerosol characterization, respiratory dosimetry modelling, and endpoints derived from an in vitro assay using human respiratory epithelial tissue. The procedure used the retained doses at the various areas of the inhalation tract estimated from a computational fluid-particle dynamics (CFPD) model coupled with a simple clearance model.
View Article and Find Full Text PDFDibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed.
View Article and Find Full Text PDFCytochrome P450 enzymes (CYPs) play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs), common environmental contaminants. While it is widely accepted that exposure to PAHs induces CYPs, effectively increasing rates of xenobiotic metabolism, dose- and time-response patterns of CYP induction are not well-known. In order to better understand dose- and time-response relationships of individual CYPs following induction, we exposed B6129SF1/J mice to single or repeated doses (2-180 μmol/kg/d) of benzo[]pyrene (BaP) or Supermix-10, a mixture of the top 10 most abundant PAHs found at the Portland Harbor Superfund Site.
View Article and Find Full Text PDFRegulatory agencies are considering alternative approaches to assessing inhalation toxicity that utilizes in vitro studies with human cells and in silico modeling in lieu of additional animal studies. In support of this goal, computational fluid-particle dynamics models were developed to estimate site-specific deposition of inhaled aerosols containing the fungicide, chlorothalonil, in the rat and human for comparisons to prior rat inhalation studies and new human in vitro studies. Under bioassay conditions, the deposition was predicted to be greatest at the front of the rat nose followed by the anterior transitional epithelium and larynx corresponding to regions most sensitive to local contact irritation and cytotoxicity.
View Article and Find Full Text PDFThe rabbit nose's ability to filter out inhaled agents is directly related to its defense to infectious diseases. The knowledge of the rabbit nose anatomy is essential to appreciate its functions in ventilation regulation, aerosol filtration and olfaction. The objective of this study is to numerically simulate the inhalation and deposition of nanoparticles in a New Zealand white (NZW) rabbit nose model with an emphasis on the structure-function relation under normal and sniffing conditions.
View Article and Find Full Text PDFLipids are a naturally occurring group of molecules that not only contribute to the structural integrity of the lung preventing alveolar collapse but also play important roles in the anti-inflammatory responses and antiviral protection. Alteration in the type and spatial localization of lipids in the lung plays a crucial role in various diseases, such as respiratory distress syndrome (RDS) in preterm infants and oxidative stress-influenced diseases, such as pneumonia, emphysema, and lung cancer following exposure to environmental stressors. The ability to accurately measure spatial distributions of lipids and metabolites in lung tissues provides important molecular insights related to lung function, development, and disease states.
View Article and Find Full Text PDFInhalation of Bacillus anthracis spores can lead to an anthrax infection that can be fatal. Previously published mathematical models have extrapolated kinetic rates associated with bacterial growth in New Zealand White (NZW) rabbits to humans, but to date, actual measurements of the underlying processes associated with anthrax virulence between species have not been conducted. To address this knowledge gap, we have quantified species-specific rate constants associated with germination, proliferation, and immune cell inactivation of B.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules.
View Article and Find Full Text PDFThis data is a curated collection of visual images of gene expression patterns from the pre- and post-natal mouse lung, accompanied by associated mRNA probe sequences and RNA-Seq expression profiles. Mammalian lungs undergo significant growth and cellular differentiation before and after the transition to breathing air. Documenting normal lung development is an important step in understanding abnormal lung development, as well as the challenges faced during a preterm birth.
View Article and Find Full Text PDFCytochrome P450 monooxygenase (P450) enzymes metabolize critical endogenous chemicals and oxidize nearly all xenobiotics. Dysregulated P450 activities lead to altered capacity for drug metabolism and cellular stress. The effects of mixed exposures on P450 expression and activity are variable and elusive.
View Article and Find Full Text PDFThe lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2018
Biochemical networks mediating normal lung morphogenesis and function have important implications for ameliorating morbidity and mortality in premature infants. Although several transcript-level studies have examined normal lung development, corresponding protein-level analyses are lacking. Here we performed proteomics analysis of murine lungs from embryonic to early adult ages to identify the molecular networks mediating normal lung development.
View Article and Find Full Text PDFIn 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2017
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults.
View Article and Find Full Text PDFConstant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively.
View Article and Find Full Text PDFLung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations.
View Article and Find Full Text PDFLaser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues.
View Article and Find Full Text PDF