Stakeholders need operational tools to assess crop protection strategies in regard to environmental impact. The need to assess and report on the impacts of pesticide use on the environment has led to the development of numerous indicators. However, only a few studies have addressed the predictive quality of these indicators.
View Article and Find Full Text PDFThis study evaluates the efficiency of two small constructed wetlands installed in the regulatory grass strips between a drained plot and a river. The observed nitrate removal efficiencies were independent of the season or type of constructed wetland and ranged from 5.4 to 10.
View Article and Find Full Text PDFOxidative degradation of atrazine by hydroxyl radicals (()OH) was studied in aqueous medium. ()OH were formed in situ from electrochemically generating Fenton's reagent by an indirect electrochemical advanced oxidation process. Identification and evolution of seven main aromatic metabolites and four short-chain carboxylic acids were performed by using liquid chromatography analyses.
View Article and Find Full Text PDFBatch adsorption and desorption experiments were performed using thirteen agricultural soil samples and five pesticides. Experimental data indicated a gradient in pesticide adsorption on soil: trifluralin >> 2,4-D > isoproturon> atrazine >> bentazone. Atrazine, isoproturon and trifluralin adsorption were correlated to soil organic matter content (r2 = 0.
View Article and Find Full Text PDFA soil column experiment under outdoor conditions was performed to monitor the fate of 14C-ring-labelled sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione and atrazine, 6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine, in water leachates and in the ploughed horizon of a sandy loam soil. Two months after treatment, the cumulative amounts of herbicide residues leached from the soil were 14.5% and 7% of the applied radioactivity for sulcotrione and atrazine, respectively.
View Article and Find Full Text PDFPrevious sorption/desorption batch experiments have indicated that bentazone is weakly sorbed by soils. In addition, field experiments have shown that 4% of the bentazone sprayed can be leached to drainage water. In order to complete bentazone characterisation, we have assessed the effect of time on its behaviour in contrasting soils.
View Article and Find Full Text PDF